Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Yi Chuan ; 44(11): 1044-1055, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384996

RESUMO

Mitogen-activated protein kinase kinase kinases (MAPKKKs) are important components of the MAPK cascade and play crucial roles in development and stress responses. Arabidopsis pumila is an ephemeral Brassicaceae plant growing in Xinjiang desert regions, which possesses salt tolerance. To explore the evolution and function of the MAPKKK gene family in A. pumila, 143 ApMAPKKK genes were identified from A. pumila genome by genome-wide analysis, which were categorized into three subfamilies: ZIK (20), MEKK (36) and RAF (87). There existed 74 and 72 colinear genes between A. thaliana, A. lyrata and A. pumila, respectively, indicating that this gene family expanded obviously in A. pumila genome. Evolutionary analysis revealed that there were 64 duplicated gene pairs with Ka/Ks less than 1, and purifying selection was dominant. RNA-seq data were used to analyze the expression characteristics of ApMAPKKK genes in response to salt stress and in different tissues. The results showed that most ApMAPKKK genes were up-regulated under 250 mmol/L NaCl stress. For example, ApMAPKKK18-1/2 and ApMAPKKK17-1/2 were substantially up-regulated. Tissue expression profiles showed that ApMAPKKK mainly presented six expression patterns. Some duplicated genes were differentially expressed in response to salt stress and in different tissues. These results lay a foundation for further understanding the complex mechanism of MAPKKK gene family transduction pathway in response to abiotic stresses in A. pumila.


Assuntos
Arabidopsis , MAP Quinase Quinase Quinases , Filogenia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Família Multigênica , Perfilação da Expressão Gênica , Sequência de Aminoácidos
2.
J Nanobiotechnology ; 19(1): 453, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963449

RESUMO

BACKGROUND: The interactions between nanoparticles (NPs) and plasma proteins form a protein corona around NPs after entering the biological environment, which provides new biological properties to NPs and mediates their interactions with cells and biological barriers. Given the inevitable interactions, we regard nanoparticle‒protein interactions as a tool for designing protein corona-mediated drug delivery systems. Herein, we demonstrate the successful application of protein corona-mediated brain-targeted nanomicelles in the treatment of glioma, loading them with paclitaxel (PTX), and decorating them with amyloid ß-protein (Aß)-CN peptide (PTX/Aß-CN-PMs). Aß-CN peptide, like the Aß1-42 peptide, specifically binds to the lipid-binding domain of apolipoprotein E (ApoE) in vivo to form the ApoE-enriched protein corona surrounding Aß-CN-PMs (ApoE/PTX/Aß-CN-PMs). The receptor-binding domain of the ApoE then combines with low-density lipoprotein receptor (LDLr) and LDLr-related protein 1 receptor (LRP1r) expressed in the blood-brain barrier and glioma, effectively mediating brain-targeted delivery. METHODS: PTX/Aß-CN-PMs were prepared using a film hydration method with sonication, which was simple and feasible. The specific formation of the ApoE-enriched protein corona around nanoparticles was characterized by Western blotting analysis and LC-MS/MS. The in vitro physicochemical properties and in vivo anti-glioma effects of PTX/Aß-CN-PMs were also well studied. RESULTS: The average size and zeta potential of PTX/Aß-CN-PMs and ApoE/PTX/Aß-CN-PMs were 103.1 nm, 172.3 nm, 7.23 mV, and 0.715 mV, respectively. PTX was efficiently loaded into PTX/Aß-CN-PMs, and the PTX release from rhApoE/PTX/Aß-CN-PMs exhibited a sustained-release pattern in vitro. The formation of the ApoE-enriched protein corona significantly improved the cellular uptake of Aß-CN-PMs on C6 cells and human umbilical vein endothelial cells (HUVECs) and enhanced permeability to the blood-brain tumor barrier in vitro. Meanwhile, PTX/Aß-CN-PMs with ApoE-enriched protein corona had a greater ability to inhibit cell proliferation and induce cell apoptosis than taxol. Importantly, PTX/Aß-CN-PMs exhibited better anti-glioma effects and tissue distribution profile with rapid accumulation in glioma tissues in vivo and prolonged median survival of glioma-bearing mice compared to those associated with PMs without the ApoE protein corona. CONCLUSIONS: The designed PTX/Aß-CN-PMs exhibited significantly enhanced anti-glioma efficacy. Importantly, this study provided a strategy for the rational design of a protein corona-based brain-targeted drug delivery system. More crucially, we utilized the unfavorable side of the protein corona and converted it into an advantage to achieve brain-targeted drug delivery.


Assuntos
Antineoplásicos/administração & dosagem , Apolipoproteínas E/administração & dosagem , Encéfalo/efeitos dos fármacos , Glioma/tratamento farmacológico , Nanopartículas/administração & dosagem , Coroa de Proteína , Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/farmacocinética , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apolipoproteínas E/química , Apolipoproteínas E/farmacocinética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Glioma/metabolismo , Humanos , Camundongos , Micelas , Nanopartículas/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Paclitaxel/farmacocinética , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacocinética , Poliésteres/administração & dosagem , Poliésteres/química , Poliésteres/farmacocinética , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Coroa de Proteína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA