Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.265
Filtrar
1.
Cell ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39013469

RESUMO

Vesicle trafficking is a fundamental process that allows for the sorting and transport of specific proteins (i.e., "cargoes") to different compartments of eukaryotic cells. Cargo recognition primarily occurs through coats and the associated proteins at the donor membrane. However, it remains unclear whether cargoes can also be selected at other stages of vesicle trafficking to further enhance the fidelity of the process. The WDR11-FAM91A1 complex functions downstream of the clathrin-associated AP-1 complex to facilitate protein transport from endosomes to the TGN. Here, we report the cryo-EM structure of human WDR11-FAM91A1 complex. WDR11 directly and specifically recognizes a subset of acidic clusters, which we term super acidic clusters (SACs). WDR11 complex assembly and its binding to SAC-containing proteins are indispensable for the trafficking of SAC-containing proteins and proper neuronal development in zebrafish. Our studies thus uncover that cargo proteins could be recognized in a sequence-specific manner downstream of a protein coat.

2.
Proc Natl Acad Sci U S A ; 120(45): e2309910120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903274

RESUMO

Pontocerebellar hypoplasia (PCH) is a group of rare neurodevelopmental disorders with limited diagnostic and therapeutic options. Mutations in WDR11, a subunit of the FAM91A1 complex, have been found in patients with PCH-like symptoms; however, definitive evidence that the mutations are causal is still lacking. Here, we show that depletion of FAM91A1 results in developmental defects in zebrafish similar to that of TBC1D23, an established PCH gene. FAM91A1 and TBC1D23 directly interact with each other and cooperate to regulate endosome-to-Golgi trafficking of KIAA0319L, a protein known to regulate axonal growth. Crystal structure of the FAM91A1-TBC1D23 complex reveals that TBC1D23 binds to a conserved surface on FAM91A1 by assuming a Z-shaped conformation. More importantly, the interaction between FAM91A1 and TBC1D23 can be used to predict the risk of certain TBC1D23-associated mutations to PCH. Collectively, our study provides a molecular basis for the interaction between TBC1D23 and FAM91A1 and suggests that disrupted endosomal trafficking underlies multiple PCH subtypes.


Assuntos
Doenças Cerebelares , Peixe-Zebra , Animais , Humanos , Doenças Cerebelares/genética , Variação Genética , Complexo de Golgi , Peixe-Zebra/genética
3.
Proc Natl Acad Sci U S A ; 120(30): e2220296120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459535

RESUMO

Metastasis, especially intrahepatic, is a major challenge for hepatocellular carcinoma (HCC) treatment. Cytoskeleton remodeling has been identified as a vital process mediating intrahepatic spreading. Previously, we reported that HCC tumor adhesion and invasion were modulated by circular RNA (circRNA), which has emerged as an important regulator of various cellular processes and has been implicated in cancer progression. Here, we uncovered a nuclear circRNA, circASH2, which is preferentially lost in HCC tissues and inhibits HCC metastasis by altering tumor cytoskeleton structure. Tropomyosin 4 (TPM4), a critical binding protein of actin, turned out to be the major target of circASH2 and was posttranscriptionally suppressed. Such regulation is based on messenger RNA (mRNA)/precursormRNA splicing and degradation process. Furthermore, liquid-liquid phase separation of nuclear Y-box binding protein 1 (YBX1) enhanced by circASH2 augments TPM4 transcripts decay. Together, our data have revealed a tumor-suppressive circRNA and, more importantly, uncovered a fine regulation mechanism for HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro , Proliferação de Células/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Linhagem Celular Tumoral , Proteína 1 de Ligação a Y-Box/genética
4.
EMBO J ; 40(15): e108050, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34155657

RESUMO

Selective autophagy mediates specific degradation of unwanted cytoplasmic components to maintain cellular homeostasis. The suppressor of gene silencing 3 (SGS3) and RNA-dependent RNA polymerase 6 (RDR6)-formed bodies (SGS3/RDR6 bodies) are essential for siRNA amplification in planta. However, whether autophagy receptors regulate selective turnover of SGS3/RDR6 bodies is unknown. By analyzing the transcriptomic response to virus infection in Arabidopsis, we identified a virus-induced small peptide 1 (VISP1) composed of 71 amino acids, which harbor a ubiquitin-interacting motif that mediates interaction with autophagy-related protein 8. Overexpression of VISP1 induced selective autophagy and compromised antiviral immunity by inhibiting SGS3/RDR6-dependent viral siRNA amplification, whereas visp1 mutants exhibited opposite effects. Biochemistry assays demonstrate that VISP1 interacted with SGS3 and mediated autophagic degradation of SGS3/RDR6 bodies. Further analyses revealed that overexpression of VISP1, mimicking the sgs3 mutant, impaired biogenesis of endogenous trans-acting siRNAs and up-regulated their targets. Collectively, we propose that VISP1 is a small peptide receptor functioning in the crosstalk between selective autophagy and RNA silencing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Peptídeos/genética , RNA Polimerase Dependente de RNA/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Autofagossomos/fisiologia , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Peptídeos/metabolismo , Imunidade Vegetal , Plantas Geneticamente Modificadas , RNA Interferente Pequeno , RNA Polimerase Dependente de RNA/genética , Nicotiana/genética
5.
Proc Natl Acad Sci U S A ; 119(28): e2106858119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787050

RESUMO

Mendelian randomization (MR) is a valuable tool for inferring causal relationships among a wide range of traits using summary statistics from genome-wide association studies (GWASs). Existing summary-level MR methods often rely on strong assumptions, resulting in many false-positive findings. To relax MR assumptions, ongoing research has been primarily focused on accounting for confounding due to pleiotropy. Here, we show that sample structure is another major confounding factor, including population stratification, cryptic relatedness, and sample overlap. We propose a unified MR approach, MR-APSS, which 1) accounts for pleiotropy and sample structure simultaneously by leveraging genome-wide information; and 2) allows the inclusion of more genetic variants with moderate effects as instrument variables (IVs) to improve statistical power without inflating type I errors. We first evaluated MR-APSS using comprehensive simulations and negative controls and then applied MR-APSS to study the causal relationships among a collection of diverse complex traits. The results suggest that MR-APSS can better identify plausible causal relationships with high reliability. In particular, MR-APSS can perform well for highly polygenic traits, where the IV strengths tend to be relatively weak and existing summary-level MR methods for causal inference are vulnerable to confounding effects.


Assuntos
Pleiotropia Genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Causalidade , Análise da Randomização Mendeliana/métodos , Fenótipo , Reprodutibilidade dos Testes
6.
Chem Soc Rev ; 53(1): 502-544, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099340

RESUMO

Covalent organic frameworks (COFs) represent an important class of crystalline porous materials with designable structures and functions. The interconnected organic monomers, featuring pre-designed symmetries and connectivities, dictate the structures of COFs, endowing them with high thermal and chemical stability, large surface area, and tunable micropores. Furthermore, by utilizing pre-functionalization or post-synthetic functionalization strategies, COFs can acquire multifunctionalities, leading to their versatile applications in gas separation/storage, catalysis, and optoelectronic devices. Our review provides a comprehensive account of the latest advancements in the principles, methods, and techniques for structural design and determination of COFs. These cutting-edge approaches enable the rational design and precise elucidation of COF structures, addressing fundamental physicochemical challenges associated with host-guest interactions, topological transformations, network interpenetration, and defect-mediated catalysis.

7.
J Physiol ; 602(2): 355-372, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38165402

RESUMO

This study aimed to determine which physiological factors impact net efficiency (ηnet) in oldest-old individuals at different stages of skeletal muscle disuse. To this aim, we examined ηnet, central haemodynamics, peripheral circulation, and peripheral factors (skeletal muscle fibre type, capillarization and concentration of mitochondrial DNA [mtDNA]). Twelve young (YG; 25 ± 2 years), 12 oldest-old mobile (OM; 87 ± 3 years), and 12 oldest-old immobile (OI; 88 ± 4 years) subjects performed dynamic knee extensor (KE) and elbow flexors (EF) exercise. Pulmonary oxygen uptake, photoplethysmography, Doppler ultrasound and muscle biopsies of the vastus lateralis and biceps brachii were used to assess central and peripheral adaptations to advanced ageing and disuse. Compared to the YG (12.1 ± 2.4%), the ηnet of lower-limb muscle was higher in the OM (17.6 ± 3.5%, P < 0.001), and lower in the OI (8.9 ± 1.9%, P < 0.001). These changes in ηnet during KE were coupled with significant peripheral adaptations, revealing strong correlations between ηnet and the proportion of type I muscle fibres (r = 0.82), as well as [mtDNA] (r = 0.77). No differences in ηnet were evident in the upper-limb muscles between YG, OM and OI. In view of the differences in limb-specific activity across the lifespan, these findings suggest that ηnet is reduced by skeletal muscle inactivity and not by chronological age, per se. Likewise, this study revealed that the age-related changes in ηnet are not a consequence of central or peripheral haemodynamic adaptations, but are likely a product of peripheral changes related to skeletal muscle fibre type and mitochondrial density. KEY POINTS: Although the effects of ageing and muscle disuse deeply impact the cardiovascular and skeletal muscle function, the combination of these factors on the mechanical efficiency are still a matter of debate. By measuring both upper- and lower-limb muscle function, which experience differing levels of disuse, we examined the influence of central and peripheral haemodynamics, and skeletal muscle factors linked to mechanical efficiency. Across the ages and degree of disuse, upper-limb muscles exhibited a preserved work economy. In the legs the oldest-old without mobility limitations exhibited an augmented mechanical efficiency, which was reduced in those with an impairment in ambulation. These changes in mechanical efficiency were associated with the proportion of type I muscle fibres. Recognition that the mechanical efficiency is not simply age-dependent, but the consequence of inactivity and subsequent skeletal muscle changes, highlights the importance of maintaining physical activity across the lifespan.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Idoso de 80 Anos ou mais , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Envelhecimento/fisiologia , Extremidade Inferior , DNA Mitocondrial
8.
J Am Chem Soc ; 146(14): 9871-9879, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547318

RESUMO

Carbenes, recognized as potent intermediates, enable unique chemical transformations, and organoborons are pivotal in diverse chemical applications. As a hybrid of carbene and the boryl group, α-boryl carbenes are promising intermediates for the construction of organoborons; unfortunately, such carbenes are hard to access and have low structural diversity with their asymmetric transformations largely uncharted. In this research, we utilized boryl cyclopropenes as precursors for the swift synthesis of α-boryl metal carbenes, a powerful category of intermediates for chiral organoboron synthesis. These α-boryl carbenes undergo a series of highly enantioselective transfer reactions, including B-H and Si-H insertion, cyclopropanation, and cyclopropanation/Cope rearrangement, catalyzed by a singular chiral copper complex. This approach opens paths to previously unattainable but easily transformable chiral organoborons, expanding both carbene and organoboron chemistry.

9.
Br J Cancer ; 130(4): 694-700, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38177659

RESUMO

BACKGROUND: Neoadjuvant chemo-immunotherapy combination has shown remarkable advances in the management of esophageal squamous cell carcinoma (ESCC). However, the identification of a reliable biomarker for predicting the response to this chemo-immunotherapy regimen remains elusive. While computed tomography (CT) is widely utilized for response evaluation, its inherent limitations in terms of accuracy are well recognized. Therefore, in this study, we present a novel technique to predict the response of ESCC patients before receiving chemo-immunotherapy by testing volatile organic compounds (VOCs) in exhaled breath. METHODS: This study employed a prospective-specimen-collection, retrospective-blinded-evaluation design. Patients' baseline breath samples were collected and analyzed using high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS). Subsequently, patients were categorized as responders or non-responders based on the evaluation of therapeutic response using pathology (for patients who underwent surgery) or CT images (for patients who did not receive surgery). RESULTS: A total of 133 patients were included in this study, with 91 responders who achieved either a complete response (CR) or a partial response (PR), and 42 non-responders who had stable disease (SD) or progressive disease (PD). Among 83 participants who underwent both evaluations with CT and pathology, the paired t-test revealed significant differences between the two methods (p < 0.05). For the breath test prediction model using breath test data from all participants, the validation set demonstrated mean area under the curve (AUC) of 0.86 ± 0.06. For 83 patients with pathological reports, the breath test achieved mean AUC of 0.845 ± 0.123. CONCLUSIONS: Since CT has inherent weakness in hollow organ assessment and no other ideal biomarker has been found, our study provided a noninvasive, feasible, and inexpensive tool that could precisely predict ESCC patients' response to neoadjuvant chemo-immunotherapy combination using breath test based on HPPI-TOFMS.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/terapia , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/tratamento farmacológico , Estudos Retrospectivos , Estudos Prospectivos , Terapia Neoadjuvante , Testes Respiratórios/métodos , Biomarcadores
10.
Anal Chem ; 96(24): 10046-10055, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38845359

RESUMO

Extracellular vesicle (EV) molecular phenotyping offers enormous opportunities for cancer diagnostics. However, the majority of the associated studies adopted biomarker-based unimodal analysis to achieve cancer diagnosis, which has high false positives and low precision. Herein, we report a multimodal platform for the high-precision diagnosis of bladder cancer (BCa) through a multispectral 3D DNA machine in combination with a multimodal machine learning (ML) algorithm. The DNA machine was constructed using magnetic microparticles (MNPs) functionalized with aptamers that specifically identify the target of interest, i.e., five protein markers on bladder-cancer-derived urinary EVs (uEVs). The aptamers were hybridized with DNA-stabilized silver nanoclusters (DNA/AgNCs) and a G-quadruplex/hemin complex to form a sensing module. Such a DNA machine ensured multispectral detection of protein markers by fluorescence (FL), inductively coupled plasma mass spectrometry (ICP-MS), and UV-vis absorption (Abs). The obtained data sets then underwent uni- or multimodal ML for BCa diagnosis to compare the analytical performance. In this study, urine samples were obtained from our prospective cohort (n = 45). Our analytical results showed that the 3D DNA machine provided a detection limit of 9.2 × 103 particles mL-1 with a linear range of 4 × 104 to 5 × 107 particles mL-1 for uEVs. Moreover, the multimodal data fusion model exhibited an accuracy of 95.0%, a precision of 93.1%, and a recall rate of 93.2% on average, while those of the three types of unimodal models were no more than 91%. The elevated diagnosis precision by using the present fusion platform offers a perspective approach to diminishing the rate of misdiagnosis and overtreatment of BCa.


Assuntos
Aprendizado de Máquina , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/urina , Humanos , Biomarcadores Tumorais/urina , Biomarcadores Tumorais/análise , DNA/química , Prata/química , Aptâmeros de Nucleotídeos/química , Vesículas Extracelulares/química , Nanopartículas Metálicas/química
11.
Biochem Biophys Res Commun ; 700: 149535, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38308909

RESUMO

To compare the merits and drawbacks of three approaches for establishing a rabbit model of nonobstructive coronary microcirculatory disease, namely, open thoracic subtotal ligation of coronary arteries, ultrasound-guided cardiac microsphere injection, and sodium laurate injection. New Zealand rabbits were allocated to four groups: a normal group (Blank group), an Open-chest group (Open-chest), a microsphere group (Echo-M), and a sodium laurate group (Echo-SL), each comprising 10 rabbits. The rabbits were sacrificed 24 h after the procedures, and their echocardiography, stress myocardial contrast echocardiography, pathology, and surgical times were compared. The results demonstrated varying degrees of reduced cardiac function in all three experimental groups, the Open-chest group exhibiting the most significant decline. The myocardial filling in the affected areas was visually analyzed by myocardial contrast echocardiography, revealing sparse filling at rest but more after stress. Quantitative analysis of perfusion parameters (ß, A, MBF) in the affected myocardium showed reduced values, the Open-chest group having the most severe reductions. No differences were observed in stress myocardial acoustic imaging parameters between the Echo-M and Echo-SL groups. Among the pathological presentations, the Open-chest model predominantly exhibited localized ischemia, while the Echo-M model was characterized by mechanical physical embolism, and the Echo-SL model displayed in situ thrombosis as the primary pathological feature. Inflammatory responses and collagen deposition were observed in all groups, with the severity ranking of Open-chest > Echo-SL > Echo-M. The ultrasound-guided intracardiac injection method used in this experiment outperformed open-chest surgery in terms of procedural efficiency, invasiveness, and maneuverability. This study not only optimizes established cardiac injection techniques but also offers valuable evidence to support clinical investigations through a comparison of various modeling methods.


Assuntos
Doença da Artéria Coronariana , Circulação Coronária , Coelhos , Animais , Microcirculação , Circulação Coronária/fisiologia , Miocárdio/patologia
12.
Development ; 148(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33969874

RESUMO

During heart development, epicardial cells residing within the outer layer undergo epithelial-mesenchymal transition (EMT) and migrate into the underlying myocardium to support organ growth and morphogenesis. Disruption of epicardial EMT results in embryonic lethality, yet its regulation is poorly understood. Here, we report epicardial EMT within the mesothelial layer of the mouse embryonic heart at ultra-high resolution using scanning electron microscopy combined with immunofluorescence analyses. We identified morphologically active EMT regions that associated with key components of the extracellular matrix, including the basement membrane-associated proteoglycan agrin. Deletion of agrin resulted in impaired EMT and compromised development of the epicardium, accompanied by downregulation of Wilms' tumor 1. Agrin enhanced EMT in human embryonic stem cell-derived epicardial-like cells by decreasing ß-catenin and promoting pFAK localization at focal adhesions, and promoted the aggregation of dystroglycan within the Golgi apparatus in murine epicardial cells. Loss of agrin resulted in dispersal of dystroglycan in vivo, disrupting basement membrane integrity and impairing EMT. Our results provide new insights into the role of the extracellular matrix in heart development and implicate agrin as a crucial regulator of epicardial EMT.


Assuntos
Agrina/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Coração/embriologia , Coração/crescimento & desenvolvimento , Organogênese/fisiologia , Animais , Feminino , Heterogeneidade Genética , Complexo de Golgi , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Pericárdio/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
13.
Small ; 20(12): e2307132, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946700

RESUMO

Large reserves, high capacity, and low cost are the core competitiveness of disordered carbon materials as excellent anode materials for sodium-ion batteries (SIBs). And the existence and improper treatment of a large number of organic solid wastes will aggravate the burden on the environment, therefore, it is significant to transform wastes into carbon-based materials for sustainable energy utilization. Herein, a kind of hard carbon materials are reported with waste biomass-foam as the precursor, which can improve the sodium storage performance through pre-oxidation strategy. The introduction of oxygen-containing groups can promote structural cross-linking, and inhibit the melting and rearrangement of carbon structure during high-temperature carbonization that produces a disordered structure with a suitable degree of graphitization. Moreover, the micropore structure are also regulated during the high-temperature carbonization process, which is conducive to the storage of sodium ions in the low-voltage plateau region. The optimized sample as an electrode material exhibits excellent reversible specific capacity (308.0 mAh g-1) and initial Coulombic efficiency (ICE, 90.1%). In addition, a full cell with the waste foam-derived hard carbon anode and a Na3V2(PO4)3 cathode is constructed with high ICE and energy density. This work provides an effective strategy to conversion the waste to high-value hard carbon anode for sodium-ion batteries.

14.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35561293

RESUMO

Single-cell RNA-sequencing (scRNA-seq) is being used extensively to measure the mRNA expression of individual cells from deconstructed tissues, organs and even entire organisms to generate cell atlas references, leading to discoveries of novel cell types and deeper insight into biological trajectories. These massive datasets are usually collected from many samples using different scRNA-seq technology platforms, including the popular SMART-Seq2 (SS2) and 10X platforms. Inherent heterogeneities between platforms, tissues and other batch effects make scRNA-seq data difficult to compare and integrate, especially in large-scale cell atlas efforts; yet, accurate integration is essential for gaining deeper insights into cell biology. We present FIRM, a re-scaling algorithm which accounts for the effects of cell type compositions, and achieve accurate integration of scRNA-seq datasets across multiple tissue types, platforms and experimental batches. Compared with existing state-of-the-art integration methods, FIRM provides accurate mixing of shared cell type identities and superior preservation of original structure without overcorrection, generating robust integrated datasets for downstream exploration and analysis. FIRM is also a facile way to transfer cell type labels and annotations from one dataset to another, making it a reliable and versatile tool for scRNA-seq analysis, especially for cell atlas data integration.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Perfilação da Expressão Gênica/métodos , RNA , RNA Mensageiro , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
15.
New Phytol ; 241(2): 650-664, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37908121

RESUMO

Seed germination is a critical trait for the success of direct seeding in rice cultivation. However, the underlying mechanism determining seed germination is largely unknown in rice. Here, we report that NAC transcription factor OsNAC3 positively regulates seed germination of rice. OsNAC3 regulates seed germination involving abscisic acid (ABA) pathway and cell elongation. OsNAC3 can directly bind to the promoter of ABA catabolic gene OsABA8ox1 and cell expansion gene OsEXP4, which consequently activates their expressions during seed germination. We also find that the expression of OsEXP4 is reduced by ABA during seed germination in rice. OsNAC3 regulates seed germination by influencing cell elongation of the embryo through directly affecting OsEXP4 expression and indirectly ABA-medicated OsEXP4 expression. The OsNAC3 elite haplotype is useful for genetic improvement of seed germination, and overexpression of OsNAC3 can significantly increase seed germination. We therefore propose that OsNAC3 is a potential target in breeding of rice varieties with high seed germination for direct seeding cultivation.


Assuntos
Ácido Abscísico , Oryza , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Germinação/genética , Oryza/metabolismo , Sementes/genética , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas
16.
Ann Surg Oncol ; 31(8): 5011-5020, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520581

RESUMO

BACKGROUND: Noninvasively and accurately predicting subcarinal lymph node metastasis (SLNM) for patients with non-small cell lung cancer (NSCLC) remains challenging. This study was designed to develop and validate a tumor and subcarinal lymph nodes (tumor-SLNs) dual-region computed tomography (CT) radiomics model for predicting SLNM in NSCLC. METHODS: This retrospective study included NSCLC patients who underwent lung resection and SLNs dissection between January 2017 and December 2020. The radiomic features of the tumor and SLNs were extracted from preoperative CT, respectively. Ninety machine learning (ML) models were developed based on tumor region, SLNs region, and tumor-SLNs dual-region. The model performance was assessed by the area under the curve (AUC) and validated internally by fivefold cross-validation. RESULTS: In total, 202 patients were included in this study. ML models based on dual-region radiomics showed good performance for SLNM prediction, with a median AUC of 0.794 (range, 0.686-0.880), which was superior to those of models based on tumor region (median AUC, 0.746; range, 0.630-0.811) and SLNs region (median AUC, 0.700; range, 0.610-0.842). The ML model, which is developed by using the naive Bayes algorithm and dual-region features, had the highest AUC of 0.880 (range of cross-validation, 0.825-0.937) among all ML models. The optimal logistic regression model was inferior to the optimal ML model for predicting SLNM, with an AUC of 0.727. CONCLUSIONS: The CT radiomics showed the potential for accurately predicting SLNM in NSCLC patients. The ML model with dual-region radiomic features has better performance than the logistic regression or single-region models.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Metástase Linfática , Aprendizado de Máquina , Tomografia Computadorizada por Raios X , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Carcinoma Pulmonar de Células não Pequenas/secundário , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Masculino , Feminino , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Pessoa de Meia-Idade , Idoso , Seguimentos , Prognóstico , Adulto , Linfonodos/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/cirurgia , Idoso de 80 Anos ou mais , Excisão de Linfonodo , Pneumonectomia , Radiômica
17.
Opt Express ; 32(11): 19230-19241, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859062

RESUMO

This study proposes an efficient and accurate method for parameter extraction of quantum well distributed feedback (DFB) lasers by combining the rate equation model, finite element method, transmission matrix method, and traveling wave model (TWM). By fabricating and measuring the companion Fabry-Perot (FP) lasers, material and structural parameters common with the target DFB laser are extracted efficiently. All the intrinsic parameters of the DFB laser are accurately extracted by integrating multiple mathematical models, and the possibility of multiple solutions is avoided. From the extracted parameters, the output characteristics of the DFB laser are simulated using the TWM. The simulation results agree closely with the experimental results, proving the feasibility and accuracy of the proposed method.

18.
Opt Express ; 32(2): 1764-1775, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297721

RESUMO

Optoelectronic integrated circuits (OEICs) have enhanced integration and communication capabilities in various applications. With the continued increase in complexity and scale, the need for an accurate and efficient simulation environment compatible with photonics and electronics becomes paramount. This paper introduces a method using the Verilog-A hardware language in the electronic design automation (EDA) platform to create equivalent circuit and compact models for photonic devices, considering their dispersion, polarization, multimode, and bidirectional transmission characteristics. These models can be co-simulated alongside electrical components in the electronic simulator, covering both the time and frequency domains simultaneously. Model parameters can be modified at any stage of the design process. Using the full link of an optoelectronic transceiver as an example, analyses from our Verilog-A model system show a mean absolute percentage error of 1.55% in the time-domain and 0.0318% in the frequency-domain when compared to the commercial co-simulation system (e.g., Virtuoso-INTERCONNECT). This underscores the accuracy and efficiency of our approach in OEICs design. By adopting this method, designers are enabled to conduct both electrical-specific and photonic-specific circuit analyses, as well as perform optoelectronic co-simulation within a unified platform seamlessly.

19.
Microb Pathog ; 192: 106723, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823465

RESUMO

The Hedgehog (Hh) signaling pathway is involved in T cell differentiation and development and plays a major regulatory part in different stages of T cell development. A previous study by us suggested that prenatal exposure to staphylococcal enterotoxin B (SEB) changed the percentages of T cell subpopulation in the offspring thymus. However, it is unclear whether prenatal SEB exposure impacts the Hh signaling pathway in thymic T cells. In the present study, pregnant rats at gestational day 16 were intravenously injected once with 15 µg SEB, and the thymi of both neonatal and adult offspring rats were aseptically acquired to scrutinize the effects of SEB on the Hh signaling pathway. It firstly found that prenatal SEB exposure clearly caused the increased expression of Shh and Dhh ligands of the Hh signaling pathway in thymus tissue of both neonatal and adult offspring rats, but significantly decreased the expression levels of membrane receptors of Ptch1 and Smo, transcription factor Gli1, as well as target genes of CyclinD1, C-myc, and N-myc in Hh signaling pathway of thymic T cells. These data suggest that prenatal SEB exposure inhibits the Hh signaling pathway in thymic T lymphocytes of the neonatal offspring, and this effect can be maintained in adult offspring via the imprinting effect.


Assuntos
Enterotoxinas , Proteínas Hedgehog , Transdução de Sinais , Linfócitos T , Timo , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Feminino , Gravidez , Ratos , Timo/metabolismo , Timo/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Efeitos Tardios da Exposição Pré-Natal/imunologia , Diferenciação Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Masculino
20.
Opt Lett ; 49(3): 746-749, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300105

RESUMO

As is well known, a light beam with a helical phase carries an optical orbital angular momentum (OAM), which can cause the orbital motion of trapped microparticles around the beam axis. Usually, the speed of the orbital motion is uniform along the azimuthal direction and depends on the amount of OAM and the light intensity. Here, we present the reverse customized method to tailor the nonuniform local OAM density along the azimuthal direction of the focal field, which has a hybrid polarization distribution and maintains a doughnut-shaped intensity profile. Theoretical analysis and experimental results about the orbital motion of the trapped polystyrene sphere show that the nonuniform local OAM density can be tailored by manipulating the polarization states of the focal field. Our results provide an ingenious way to control the local tangential optical force and the speed of the orbital motion of particles driven by the local OAM density and will promote exciting possibilities for exploring ways to control the mechanical dynamics of microparticles in optical trapping and microfluidics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA