RESUMO
BACKGROUND: With rapid increase in the global use of various plastics, microplastics (MPs) and nanoplastics (NPs) pollution and their adverse health effects have attracted global attention. MPs have been detected out in human body and both MPs and NPs showed female reproductive toxicological effects in animal models. Miscarriage (abnormal early embryo loss), accounting for 15-25% pregnant women worldwide, greatly harms human reproduction. However, the adverse effects of NPs on miscarriage have never been explored. RESULTS: In this study, we identified that polystyrene (PS) plastics particles were present in women villous tissues. Their levels were higher in villous tissues of unexplained recurrent miscarriage (RM) patients vs. healthy control (HC) group. Furthermore, mouse assays further confirmed that exposure to polystyrene nanoplastics (PS-NPs, 50 nm in diameter, 50 or 100 mg/kg) indeed induced miscarriage. In mechanism, PS-NPs exposure (50, 100, 150, or 200 µg/mL) increased oxidative stress, decreased mitochondrial membrane potential, and increased apoptosis in human trophoblast cells by activating Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3 signaling through mitochondrial pathway. The alteration in this signaling was consistent in placental tissues of PS-NPs-exposed mouse model and in villous tissues of unexplained RM patients. Supplement with Bcl-2 could efficiently suppress apoptosis in PS-NPs-exposed trophoblast cells and reduce apoptosis and alleviate miscarriage in PS-NPs-exposed pregnant mouse model. CONCLUSIONS: Exposure to PS-NPs activated Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3, leading to excessive apoptosis in human trophoblast cells and in mice placental tissues, further inducing miscarriage.
Assuntos
Aborto Espontâneo , Nanopartículas , Gravidez , Feminino , Humanos , Animais , Camundongos , Aborto Espontâneo/induzido quimicamente , Poliestirenos/toxicidade , Caspase 3 , Microplásticos , Plásticos , Caspase 2 , Placenta , Apoptose , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-bcl-2 , Nanopartículas/toxicidadeRESUMO
Copper pollution has attracted global environmental concern. Widespread Cu pollution results in excessive Cu accumulation in human. Epidemiological studies and animal experiments revealed that Cu exposure might have reproductive toxicity. Cuproptosis is a recently reported Cu-dependent and programmed cell death pattern. However, the mechanism by which copper exposure might cause cell cuproptosis is largely unknown. We chose trophoblast cells as cell model and found that copper exposure causes trophoblast cell cuproptosis. In mechanism, copper exposure up-regulates lnc-HZ11 expression levels, which increases intracellular Cu2+ levels and causes trophoblast cell cuproptosis. Knockdown of lnc-HZ11 efficiently reduces intracellular Cu2+ levels and alleviate trophoblast cell cuproptosis, which could be further alleviated by co-treatment with DC or TEPA. These results discover novel toxicological effects of copper exposure and also provide potential target for protection trophoblast cells from cuproptosis in the presence of excessive copper exposure.
Assuntos
Cobre , Trofoblastos , Regulação para Cima , Trofoblastos/efeitos dos fármacos , Cobre/toxicidade , Humanos , Regulação para Cima/efeitos dos fármacos , Linhagem Celular , Poluentes Ambientais/toxicidade , RNA Longo não Codificante/genéticaRESUMO
Normal pregnancy is essential for human reproduction. However, BaP (benzo(a)pyrene) and its metabolite BPDE (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) could cause dysfunctions of human trophoblast cells and might further induce miscarriage. Yet, the underlying mechanisms remain largely unknown. Herein, we identified a novel upregulated lnc-HZ04 and a novel downregulated miR-hz04 in villous tissues of unexplained recurrent miscarriage (RM) relative to those in healthy control tissues and also in BPDE-treated human trophoblast cells. Lnc-HZ04 directly and specifically bound with miR-hz04, diminished the reduction effects of miR-hz04 on IP3 R1 mRNA expression level and on IP3 R1 mRNA stability, and then activated the Ca2+ -mediated IP3 R1 /p-CaMKII/SGCB pathway, which further promoted trophoblast cell apoptosis. The miR-hz04 target site on lnc-HZ04 played crucial roles in these regulations. In normal trophoblast, relatively less lnc-HZ04 and more miR-hz04 suppressed this apoptosis pathway and gave normal pregnancy. After exposure to BPDE or in RM tissues, p53 was upregulated, which might promote p53-mediated lnc-HZ04 transcription. Relatively more lnc-HZ04 and less miR-hz04 activated this apoptosis pathway and might further induce miscarriage. BaP could also induce mice miscarriage by upregulating its corresponding murine apoptosis pathway. Therefore, BPDE-induced apoptosis of human trophoblast cells was associated with the occurrence of miscarriage. This work discovered the regulation roles of lnc-HZ04 and miR-hz04 and provided scientific and clinical understanding of the occurrence of unexplained miscarriage.
Assuntos
Aborto Habitual/genética , Apoptose/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Transdução de Sinais/genética , Trofoblastos/metabolismo , Regulação para Cima/genética , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Aborto Habitual/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Sarcoglicanas/genética , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
Increasing evidences have shown that pregnant women might miscarry after exposure with environmental BaP (benzo(a)pyrene). Additionally, BPDE (benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide), the ultimate metabolite of BaP, could induce dysfunctions of human trophoblast cells. However, it is rarely correlated between miscarriage and trophoblast dysfunctions. Moreover, their underlying mechanisms are still largely unidentified. In this study, a novel lncRNA (long non-coding RNA), lnc-HZ08, was identified to be highly expressed in human recurrent miscarriage (RM) tissues and in BPDE-treated human trophoblast cells. Lnc-HZ08 acts as a RNA scaffold to interact with both PI3K and its ubiquitin ligase CBL (Cbl proto-oncogene), enhances their protein interactions, and promotes PI3K ubiquitin degradation. In RM tissues and BPDE-treated trophoblast cells, DNA methylation level in lnc-HZ08 promoter region was reduced, which promotes estrogen receptor 1 (ER)-mediated lnc-HZ08 transcription. Subsequently, this upregulated lnc-HZ08 downregulated PI3K level, suppressed PI3K/p-AKT/p-P21/CDK2 pathway, and thus weakened proliferation, migration, and invasion of human trophoblast cells, which further induces miscarriage. These results may provide novel scientific and clinical insights in the occurrence of unexplained miscarriage. A novel lncRNA (lnc-HZ08) regulates the functions of human trophoblast cells and affects miscarriage. Lnc-HZ08 promotes PI3K ubiquitin degradation by enhancing CBL and PI3K interactions, downregulates PI3K/p-AKT/p-P21/CDK2 pathway, and weakens proliferation, migration, and invasion of trophoblast cells. BPDE exposure reduces the DNA methylation level in lnc-HZ08 promoter region and promotes estrogen receptor 1 (ER)-mediated lnc-HZ08 transcription. The suppressed PI3K/p-AKT/p-P21/CDK2 pathway regulated by increased lnc-HZ08 is associated with miscarriage. These results provide novel insights in the occurrence of unexplained miscarriage. Graphical Headlights ⢠Lnc-HZ08 downregulates PI3K/p-AKT/p-P21/CDK2 pathway to suppress proliferation, migration, and invasion of human trophoblast cells, and affects miscarriage. ⢠Lnc-HZ08 acts as a RNA scaffold to enhance the protein interaction of PI3K and its ubiquitin ligase CBL, which increases PI3K ubiquitination and degradation. ⢠Lnc-HZ08 transcription is associated with DNA methylation on its promoter region and transcription factor ER.
Assuntos
Aborto Espontâneo , RNA Longo não Codificante , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Aborto Espontâneo/genética , Aborto Espontâneo/metabolismo , Movimento Celular , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Ligases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Trofoblastos/metabolismo , Ubiquitina/metabolismoRESUMO
Mesenchymal stem cells (MSCs) derived exosomes (Exos) are one of the most promising candidate for the treatment of this condition. However, the underlying molecular mechanism remains uncertain. Here we investigated the therapeutic effect of exosomal miR-181c-5p (ExomiR-181c-5p) on a rat model of neuropathic pain induced by sciatic nerve chronic constriction injury (CCI). In this study NP model was established using the CCI method. NP levels were assessed using PWT and PWL. Microarray analysis and RT-PCR were used to determine the relative expression of miR-181c-5p. MSC-derived exosomes were extracted using the total exosome isolation reagent characterized by WB and NTA. MiR-181c-5p was loading into Exos using electroporation. The inflammation response in microglia cells and CCI rats were assessed by ELISA assay respectively. Our study demonstrates that miR-181c-5p expression was obviously decreased in a time-dependent manner in CCI rats. MiR-181c-5p was effectively electroporated and highly detected in MSC-derived Exos. ExomiR-181c-5p internalized by microglia cells and inhibit the secretion of inflammation factors. ExomiR-181c-5p intrathecal administration alleviated neuropathic pain and neuroinflammation response in CCI rats. Taken together, ExomiR-181c-5p alleviated CCI-induced NP by inhibiting neuropathic inflammation. ExomiR-181c-5p may be a valid alternative for the treatment of neuropathic pain and has vast potential for future development.
Assuntos
Exossomos , MicroRNAs , Neuralgia , Animais , Exossomos/metabolismo , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Normal pregnancy is essential for human reproduction. However, environmental BaP (benzo(a)pyrene) and its metabolite BPDE (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) induce dysfunctions of human trophoblastic cells, which could further result in miscarriage. Yet, the molecular mechanisms remain poorly understood. In this work, a novel lnc-HZ03 and a novel miR-hz03 were identified. Both lnc-HZ03 and miR-hz03 were highly expressed in human recurrent miscarriage villous tissues and in BPDE-exposed trophoblastic cells. Lnc-HZ03 and miR-hz03 upregulated each other, forming a positive feedback loop. MiR-hz03 could also upregulate p53 level by enhancing its mRNA stability. Both lnc-HZ03 and p53 mRNA contained the target site for miR-hz03 and could directly interact with miR-hz03. It was this target site instead of its mutant on lnc-HZ03 that regulated p53 expression. Subsequently, the upregulated p53 facilitated SAT1 transcription and enhanced SAT1-catalyzed spermine metabolism, which further resulted in trophoblastic cell apoptosis and induced miscarriage. All together, the p53/SAT1 pathway upregulated by lnc-HZ03 and miR-hz03 could promote BPDE-induced human trophoblastic cell apoptosis and the occurrence of miscarriage, shedding novel light on the causes of miscarriage. Graphical abstract Lnc-HZ03 and miR-hz03 regulate the occurrence of recurrent miscarriage (RM). In human trophoblastic cells, lnc-HZ03 upregulates miR-hz03 level. MiR-hz03 increases the RNA stability of lnc-HZ03 and p53 mRNA. P53 promotes SAT1 transcription and reduces its cellular spermine content, resulting in cell apoptosis. Under normal conditions, lnc-HZ03/miR-hz03 and p53/SAT1 pathways are downregulated, maintaining normal pregnancy. After exposure to BPDE, lnc-HZ03/miR-hz03 and p53/SAT1 pathways are upregulated and finally induce miscarriage.
Assuntos
Aborto Espontâneo , MicroRNAs , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido , Aborto Espontâneo/induzido quimicamente , Aborto Espontâneo/genética , Apoptose , Feminino , Humanos , MicroRNAs/genética , Gravidez , Proteína Supressora de Tumor p53/genéticaRESUMO
Effective use of genetic and genomic data in cancer prevention and treatment depends on adequate communication with patients and the public. Although relevant empirical work has emerged, the scope and outcomes of this communication research have not been characterized. We conducted a comprehensive scoping review of recent published research (2010-2017) on communication of cancer-related genetic and genomic testing (CGT) information. Searches in six databases revealed 9243 unique records; 513 papers were included. Most papers utilized an observational quantitative design; fewer utilized an experimental design. More attention has been paid to outcomes of CGT results disclosure than to decision making regarding CGT uptake or the process of results disclosure. Psychosocial outcomes were most common across studies. This literature has a strong focus on BRCA1/2, with few papers focused on Lynch syndrome or next-generation technologies. Women, Caucasians, older adults, and those of higher socioeconomic status were overrepresented. Research gaps identified include the need for studies on the process of CGT communication; examining behavioral, decision making, and communication outcomes; and inclusion of diverse populations. Addressing these gaps can help improve the use of genomics in cancer control and reduce disparities in access to and use of CGT.
Assuntos
Genômica , Comunicação Interdisciplinar , Neoplasias/epidemiologia , Tomada de Decisões , Medicina de PrecisãoRESUMO
BACKGROUND: The rate of uninsured people has decreased dramatically since the Affordable Care Act was passed. To make an informed decision, consumers need assistance to understand the advantages and disadvantages of health insurance plans. The Show Me Health Plans Web-based decision support tool was developed to improve the quality of health insurance selection. In response to the promising effectiveness of Show Me Health Plans in a randomized controlled trial (RCT) and the growing need for Web-based health insurance decision support, the study team used expert recommendations for dissemination and implementation, engaged external stakeholders, and made the Show Me Health Plans tool available to the public. OBJECTIVE: The purpose of this study was to implement the public dissemination of the Show Me Health Plans tool in the state of Missouri and to evaluate its impact compared to the RCT. METHODS: This study used a cross-sectional observational design. Dissemination phase users were compared with users in the RCT study across the same outcome measures. Time spent using the Show Me Health Plans tool, knowledge, importance rating of 9 health insurance features, and intended plan choice match with algorithm predictions were examined. RESULTS: During the dissemination phase (November 2016 to January 2017), 10,180 individuals visited the SMHP website, and the 1069 users who stayed on the tool for more than one second were included in our analyses. Dissemination phase users were more likely to live outside St. Louis City or County (P<.001), were less likely to be below the federal poverty level (P<.001), and had a higher income (P=.03). Overall, Show Me Health Plans users from St. Louis City or County spent more time on the Show Me Health Plans tool than those from other Missouri counties (P=.04); this association was not observed in the RCT. Total time spent on the tool was not correlated with knowledge scores, which were associated with lower poverty levels (P=.009). The users from the RCT phase were more likely to select an insurance plan that matched the tool's recommendations (P<.001) compared with the dissemination phase users. CONCLUSIONS: The study suggests that a higher income population may be more likely to seek information and online help when making a health insurance plan decision. We found that Show Me Health Plans users in the dissemination phase were more selective in the information they reviewed. This study illustrates one way of disseminating and implementing an empirically tested Web-based decision aid tool. Distributing Web-based tools is feasible and may attract a large number of potential users, educate them on basic health insurance information, and make recommendations based on personal information and preference. However, using Web-based tools may differ according to the demographics of the general public compared to research study participants.
Assuntos
Tomada de Decisões/fisiologia , Seguro Saúde/normas , Adolescente , Adulto , Estudos Transversais , Feminino , Humanos , Internet , Masculino , Pessoa de Meia-Idade , Estados Unidos , Adulto JovemRESUMO
XMetA is a fully human, allosteric monoclonal antibody that binds the insulin receptor with high affinity and mimics the glucoregulatory, but not the mitogenic, actions of insulin. Here we evaluated the efficacy of both single and repeat s.c. administrations of XMetA in reducing hyperglycemia in obese cynomolgus monkeys with naturally developed type 2 diabetes, a model that shares many features of human diabetes. The data show that a single s.c. administration of XMetA at dose levels ranging from 1.5 to 10 mg/kg markedly reduced fasting hyperglycemia, with a peak effect occurring 1 to 2 days after administration, and sustained for up to 1 week. XMetA's effect on hyperglycemia was observed without elevations in serum insulin and was concomitant with reduced serum C-peptide levels, even at the lowest dose. Subchronic effects were evaluated via once weekly s.c. administration of XMetA, 10 mg/kg, for 6 weeks. XMetA treatment resulted in robust weekly decreases in fasting glucose levels averaging approximately 30% throughout the study, along with a significant absolute reduction from the vehicle control baseline of 1.2% in hemoglobin A1c, a marker of long-term glycemic status. XMetA treatment was well tolerated with no injection-site reactions, no body weight gain, and no episodes of clinical hypoglycemia. Thus, XMetA shows acute and subchronic improvements in glycemic control in spontaneously diabetic cynomolgus monkeys with a broad safety margin. This profile supports the development of XMetA as a novel glucose-lowering therapeutic agent for the management of type 2 diabetes.
Assuntos
Antígenos CD/metabolismo , Diabetes Mellitus Tipo 2/sangue , Hiperglicemia/sangue , Hipoglicemia/sangue , Hipoglicemiantes/uso terapêutico , Receptor de Insulina/metabolismo , Animais , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Hiperglicemia/tratamento farmacológico , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Macaca fascicularis , Masculino , Receptor de Insulina/agonistasRESUMO
The 26th United Nations Climate Change Conference reached a series of agreements on implementing the Paris Agreement, empowering governments to independently establish emission reduction goals and encouraging market participants to invest in sustainable development. It highlighted that enhancing corporate environmental responsibility performance (CERP), driven by the collaborative efforts of government and market forces, is key to achieving global sustainability. In this context, this study is the first attempt to investigate the synergistic effects of government environmental regulation (GER) and market multi-agent green supervision (MGS) on CERP. The findings are as follows. First, GER, encompassing the multidimensional environmental responsibilities of governments, has not effectively spurred CERP. MGS, incorporating the green concerns of diverse investors and intermediaries, serves as a significant catalyst for enhancing CERP. The synergy between GER and MGS, involving multi-stakeholder collaborative governance, plays a significant motivating role in promoting CERP. Second, financing constraints and executives' attention to corporate environmental responsibility (CER) are two key channels through which the synergy between GER and MGS influences CERP. Third, firms located in regions with better economic development, those operating in non-heavily polluting industries, or non-state-owned firms exhibit heightened proactivity in improving CERP under the synergy between GER and MGS. This paper expands research on multi-agent collaborative environmental governance from the regional macro-perspective to the micro-firm level, providing a fresh perspective and theoretical basis. The novel findings offer valuable insights for policymakers and firms, especially in economies similar to China, in containing growing environmental challenges and advancing global sustainability.
RESUMO
Nanoplastics (NPs), as emerging pollutants, have attracted global attention. Nevertheless, the adverse effects of NPs on female reproductive health, especially unexplained miscarriage, are poorly understood. Defects of trophoblast cell migration and invasion are associated with miscarriage. Migrasomes were identified as cellular organelles with largely unidentified functions. Whether NPs might affect migration, invasion, and migrasome formation and induce miscarriage has been completely unexplored. In this study, we selected polystyrene nanoplastics (PS-NPs, 50 nm) as a model of plastic particles and treated human trophoblast cells and pregnant mice with PS-NPs at doses near the actual environmental exposure doses of plastic particles in humans. We found that exposure to PS-NPs induced a pregnant mouse miscarriage. PS-NPs suppressed ROCK1-mediated migration/invasion and migrasome formation. SOX2 was identified as the transcription factor of ROCK1. PS-NPs activated autophagy and promoted the autophagy degradation of SOX2, thus suppressing SOX2-mediated ROCK1 transcription. Supplementing with murine SOX2 or ROCK1 could efficiently rescue migration/invasion and migrasome formation and alleviate miscarriage. Analysis of the protein levels of SOX2, ROCK1, TSPAN4, NDST1, P62, and LC-3BII/I in PS-NP-exposed trophoblast cells, villous tissues of unexplained miscarriage patients, and placental tissues of PS-NP-exposed mice gave consistent results. Collectively, this study revealed the reproductive toxicity of nanoplastics and their potential regulatory mechanism, indicating that NP exposure is a risk factor for female reproductive health.
Assuntos
Aborto Espontâneo , Nanopartículas , Poluentes Químicos da Água , Gravidez , Humanos , Feminino , Animais , Camundongos , Microplásticos , Poliestirenos , Placenta , Autofagia , Trofoblastos , Quinases Associadas a rhoRESUMO
Defects of human trophoblast cells may induce miscarriage (abnormal early embryo loss), which is generally regulated by lncRNAs. Ferroptosis is a newly identified iron-dependent programmed cell death. Hypoxia is an important and unavoidable feature in mammalian cells. However, whether hypoxia might induce trophoblast cell ferroptosis and then induce miscarriage, as well as regulated by a lncRNA, was completely unknown. In this work, we discovered at the first time that hypoxia could result in ferroptosis of human trophoblast cells and then induce miscarriage. We also identified a novel lncRNA (lnc-HZ06) that simultaneously regulated hypoxia (indicated by HIF1α protein), ferroptosis, and miscarriage. In mechanism, HIF1α-SUMO, instead of HIF1α itself, primarily acted as a transcription factor to promote the transcription of NCOA4 (ferroptosis indicator) in hypoxic trophoblast cells. Lnc-HZ06 promoted the SUMOylation of HIF1α by suppressing SENP1-mediated deSUMOylation. HIF1α-SUMO also acted as a transcription factor to promote lnc-HZ06 transcription. Thus, both lnc-HZ06 and HIF1α-SUMO formed a positive auto-regulatory feedback loop. This loop was up-regulated in hypoxic trophoblast cells, in RM villous tissues, and in placental tissues of hypoxia-treated mice, which further induced ferroptosis and miscarriage by up-regulating HIF1α-SUMO-mediated NCOA4 transcription. Furthermore, knockdown of either murine lnc-hz06 or Ncoa4 could efficiently suppress ferroptosis and alleviate miscarriage in hypoxic mouse model. Taken together, this study provided new insights in understanding the regulatory roles of lnc-HZ06/HIF1α-SUMO/NCOA4 axis among hypoxia, ferroptosis, and miscarriage, and also offered an effective approach for treatment against miscarriage.
Assuntos
Aborto Espontâneo , Ferroptose , RNA Longo não Codificante , Camundongos , Feminino , Humanos , Gravidez , Animais , Ferroptose/genética , RNA Longo não Codificante/genética , Placenta , Hipóxia Celular , Hipóxia/genética , Fatores de Transcrição , Trofoblastos , Mamíferos , Coativadores de Receptor NuclearRESUMO
Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) are two typical non-volatile disinfection by-products (DBPs) found in drinking water. Increasing evidence has demonstrated that they show reproductive toxicity. However, whether they might have endocrine disrupting properties remains largely unknown. To discover this, we treated male mice or pregnant mice with 0, 1-, 102-, 103-, 104-, or 5â¯×â¯104-fold maximal concentration level (MCL) of DCAA or TCAA in drinking water. In male mice, the levels of testosterone in serum and androgen receptor (AR) in testis were declined with ≥â¯103-fold MCL of DCAA (26.4â¯mg/kg/d) or TCAA (52.7â¯mg/kg/d). In pregnant mice, miscarriage rates were increased with ≥â¯104-fold MCL of DCAA (264â¯mg/kg/d) or ≥â¯103-fold MCL of TCAA. The levels of FSH in serum were increased and those of estradiol and progesterone were reduced with ≥â¯103-fold MCL of DCAA or TCAA. The protein levels of estrogen receptors (ERα and ERß) in ovary were reduced with ≥â¯102-fold MCL of DCAA (2.64â¯mg/kg/d) or TCAA (5.27â¯mg/kg/d). Exposure to some certain fold MCL of DCAA or TCAA also altered the protein levels of ERα and ERß in uterus and placenta. Exposure to 5â¯×â¯104-fold MCL of both DCAA and TCAA showed the combined effects. Therefore, both DCAA and TCAA could be considered as novel reproductive endocrine disrupting chemicals, which might be helpful for further assessment of the toxicological effects of DCAA and TCAA and the awareness of reproductive endocrine disrupting properties caused by DCAA and TCAA in drinking water.
Assuntos
Água Potável , Disruptores Endócrinos , Gravidez , Feminino , Masculino , Animais , Camundongos , Água Potável/química , Desinfecção , Ácido Dicloroacético/análise , Ácido Tricloroacético/toxicidade , Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio , Receptor beta de EstrogênioRESUMO
Extracellular vesicles (EVs) mediate the intercellular crosstalk by transferring functional cargoes. Recently, we have discovered that BaP/BPDE exposure suppresses trophoblast cell migration/invasion and induces miscarriage, which are also regulate by lncRNAs at intracelluar levels. However, the EVs-mediated intercellular regulatory mechanisms are completely unexplored. Specifically, whether EVs might transfer BPDE-induced toxic lncRNA to fresh recipient trophoblast cells and suppress their migration/invasion to further induce miscarriage is completely unknown. In this study, we find that BPDE exposure up-regulates a novel lnc-HZ11, which suppresses EGR1/NF-κB/CXCL12 pathway and migration/invasion of trophoblast cells. Intercellular studies show that EV-HZ11 (lnc-HZ11 in EVs), which is highly expressed in BPDE-exposed donor cells, suppresses EGR1/NF-κB/CXCL12 pathway and migration/invasion in recipient cells by transferring lnc-HZ11 through EVs. Analysis of villous tissues collected from UM (unexplained miscarriage) patients and HC (healthy control) group shows that the levels of BPDE-DNA adducts, lnc-HZ11 or EV-lnc-HZ11, and EGR1/NF-κB/CXCL12 pathway are all associated with miscarriage. Mouse assays show that BaP exposure up-regulates the levels of lnc-Hz11 or EV-Hz11, suppresses Egr1/Nf-κb/Cxcl12 pathway, and eventually induces miscarriage. Knockdown of lnc-Hz11 by injecting EV-AS-Hz11 could effectively alleviate miscarriage in BaP-exposed mice. Furthermore, EV-HZ11 in serum samples could well predict the risk of miscarriage. Collectively, this study not only discovers EVs-HZ11-mediated intercellular mechanisms that BaP/BPDE suppresses trophoblast cell migration/invasion and induces miscarriage but also provides new approach for treatment against unexplained miscarriage through EV-HZ11.
Assuntos
Aborto Espontâneo , Movimento Celular , Vesículas Extracelulares , RNA Longo não Codificante , Trofoblastos , Regulação para Cima , Vesículas Extracelulares/metabolismo , Trofoblastos/metabolismo , Humanos , Feminino , RNA Longo não Codificante/genética , Camundongos , Animais , Gravidez , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , NF-kappa B/metabolismoRESUMO
Exposure to environmental BaP or its metabolite BPDE causes trophoblast cell dysfunctions to induce miscarriage (abnormal early embryo loss), which might be generally regulated by lncRNAs. IL1B, a critical inflammatory cytokine, is closely associated with adverse pregnancy outcomes. However, whether IL1B might cause dysfunctions of BaP/BPDE-exposed trophoblast cells to induce miscarriage, as well as its specific epigenetic regulatory mechanisms, is completely unexplored. In this study, we find that BPDE-DNA adducts, trophoblast cell dysfunctions, and miscarriage are closely associated. Moreover, we also identify a novel lnc-HZ06 and IL1B, both of which are highly expressed in BPDE-exposed trophoblast cells, in villous tissues of recurrent miscarriage patients, and in placental tissues of BaP-exposed mice with miscarriage. Both lnc-HZ06 and IL1B suppress trophoblast cell migration/invasion and increase apoptosis. In mechanism, lnc-HZ06 promotes STAT4-mediated IL1B mRNA transcription, enhances IL1B mRNA stability by promoting the formation of METTL3/HuR/IL1B mRNA ternary complex, and finally up-regulates IL1B expression levels. BPDE exposure promotes TBP-mediated lnc-HZ06 transcription, and thus up-regulates IL1B levels. Knockdown of either murine lnc-hz06 (which down-regulates Il1b levels) or murine Il1b could alleviate miscarriage in BaP-exposed mice. Collectively, this study not only discovers novel biological mechanisms and pathogenesis of unexplained miscarriage but also provides novel potential targets for treatment against BaP/BPDE-induced miscarriage.
Assuntos
Interleucina-1beta , RNA Longo não Codificante , Trofoblastos , Animais , Feminino , Humanos , Camundongos , Gravidez , Aborto Habitual/genética , Aborto Habitual/metabolismo , Aborto Espontâneo , Apoptose/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Regulação para CimaRESUMO
Abnormal expression of long non-coding RNAs (lncRNAs) is associated with the dysfunctions of human trophoblast cells and the occurrence of miscarriage (abnormal early embryo loss). BBC3/PUMA (BCL2 binding component 3) plays significant roles in regulation of cell apoptosis. However, whether specific lncRNAs might regulate BBC3 in trophoblast cells and further induce apoptosis and miscarriage remains completely unclear. Through screening, we identified a novel lnc-HZ12, which was significantly highly expressed in villous tissues of recurrent miscarriage (RM) patients relative to their healthy control (HC) group. Lnc-HZ12 suppressed chaperone-mediated autophagy (CMA) degradation of BBC3, promoted trophoblast cell apoptosis, and was associated with miscarriage. In mechanism, lnc-HZ12 downregulated the expression levels of chaperone molecules HSPA8 and LAMP2A in trophoblast cells. Meanwhile, lnc-HZ12 (mainly lnc-HZ12-SO2 region in F2 fragment) and HSPA8 competitively bound with the 169RVLYNL174 patch on BBC3, which prevented BBC3 from interactions with HSPA8 and impaired the formation of BBC3-HSPA8-LAMP2A complex for CMA degradation of BBC3. Thus, lnc-HZ12 upregulated the BBC3-CASP9-CASP3 pathway and induced trophoblast cell apoptosis. In villous tissues, lnc-HZ12 was highly expressed, CMA degradation of BBC3 was suppressed, and the apoptosis levels were higher in RM vs HC villous tissues, all of which were associated with miscarriage. Interestingly, knockdown of murine Bbc3 could efficiently suppress placental apoptosis and alleviate miscarriage in a mouse miscarriage model. Taken together, our results indicated that lnc-HZ12 and BBC3 played important roles in trophoblast cell apoptosis and miscarriage and might act as attractive targets for miscarriage treatment.Abbreviation: 7-AAD: 7-aminoactinomycin D; BaP: benzopyrene; BBC3/PUMA: BCL2 binding component 3; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; CMA: chaperone-mediated autophagy; CQ: chloroquine; DMSO: dimethyl sulfoxide; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HC: healthy control; HSPA8: heat shock protein family A (Hsp70) member 8; IP: immunoprecipitation; LAMP2A: lysosomal associated membrane protein 2; LncRNA: long non-coding RNA; mRNA: messenger RNA; MT: mutant-type; NC: negative control; NSO: nonspecific oligonucleotide; PARP1: poly(ADP-ribose) polymerase 1; RIP: RNA immunoprecipitation; RM: recurrent miscarriage; TBP: TATA-box binding protein; WT: wild-type.
Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Autofagia , Proteínas de Choque Térmico HSC70 , RNA Longo não Codificante , Trofoblastos , Apoptose/genética , Humanos , Trofoblastos/metabolismo , Animais , Feminino , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSC70/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Camundongos , Autofagia/genética , Autofagia/fisiologia , Gravidez , Aborto Espontâneo/metabolismo , Autofagia Mediada por Chaperonas/genética , Ligação ProteicaRESUMO
BACKGROUND: Most relatives of women with ovarian cancer are unaware of their increased risk for cancer and their eligibility for genetic counseling. State cancer registries offer a platform to communicate about inherited risk to this population. METHODS: We conducted a two-arm randomized trial to test a theory-based communication intervention-Your Family Connects (YFC)-compared to the standard Georgia Cancer Registry (GCR) contact. A total of 1,938 eligible ovarian cancer survivors were randomly assigned to either the YFC arm (n = 969) or the Standard Care arm (n = 969). We assessed the number of ovarian cancer survivors and their close relatives who logged on to the study website by arm. RESULTS: Survivor reach was significantly higher in the Standard Care arm than YFC (20.8% vs. 15.2%, respectively; P < 0.001). However, reach to relatives was limited to listed relatives in the YFC arm (n = 20, 13.2%), with little participation from those in the Standard Care arm (n = 1, 0.4%). Pooling across arms, minority race, longer time since diagnosis, and older age were all significantly associated with a decreased likelihood that the survivor accessed the website. CONCLUSIONS: The YFC intervention showed lower effectiveness for engaging survivors but was more effective than Standard Care in engaging at-risk relatives. Other factors (e.g., time since diagnosis) associated with lower reach must be considered in refining future outreach approaches. IMPACT: Partnering with a state cancer registry to foster family communication about inherited cancer risk is feasible but the possibility for broad population reach warrants further testing.
Assuntos
Sobreviventes de Câncer , Aconselhamento Genético , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/psicologia , Sobreviventes de Câncer/psicologia , Sobreviventes de Câncer/estatística & dados numéricos , Aconselhamento Genético/métodos , Aconselhamento Genético/psicologia , Pessoa de Meia-Idade , Família/psicologia , Adulto , Idoso , Sistema de Registros , Predisposição Genética para DoençaRESUMO
Human trophoblast cells are crucial for healthy pregnancy. However, whether the defective homologous recombination (HR) repair of dsDNA break (DSB) in trophoblast cells may induce miscarriage is completely unknown. Moreover, the abundance of BRCA1 (a crucial protein for HR repair), its recruitment to DSB foci, and its epigenetic regulatory mechanisms, are also fully unexplored. In this work, it is identified that a novel lnc-HZ10, which is highly experssed in villous tissues of recurrent miscarriage (RM) vs their healthy control group, suppresses HR repair of DSB in trophoblast cell. Lnc-HZ10 and AhR (aryl hydrocarbon receptor) form a positive feedback loop. AhR acts as a transcription factor to promote lnc-HZ10 transcription. Meanwhile, lnc-HZ10 also increases AhR levels by suppressing its CUL4B-mediated ubiquitination degradation. Subsequently, AhR suppresses BRCA1 transcription; and lnc-HZ10 (mainly 1-447 nt) interacts with γ-H2AX; and thus, impairs its interactions with BRCA1. BPDE exposure may trigger this loop to suppress HR repair in trophoblast cells, possibly inducing miscarriage. Knockdown of murine Ahr efficiently recovers HR repair in placental tissues and alleviates miscarriage in a mouse miscarriage model. Therefore, it is suggested that AhR/lnc-HZ10/BRCA1 axis may be a promising target for alleviation of unexplained miscarriage.
Assuntos
Aborto Espontâneo , Reparo de DNA por Recombinação , Humanos , Feminino , Camundongos , Gravidez , Animais , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Aborto Espontâneo/genética , Placenta/metabolismo , Trofoblastos/metabolismo , Proteínas Culina/genéticaRESUMO
Copper pollution has become global environmental concern. Widespread Cu pollution results in excessive Cu exposure in human. Epidemiological studies and animal experiments revealed that Cu exposure might have reproductive toxicity. Cuproptosis is a newly reported Cu-dependent and programmed cell death formTsvetkov et al., 2022. However, whether copper exposure at real environmental exposure dose might cause placental cuproptosis and induce miscarriage was completely unexplored. In this study, we found that Cu exposure during pregnancy induced miscarriage or complete pregnancy loss by inducing placenta cuproptosis in CuCl2-exposed pregnant mice. Notably, Cu exposure at 1.3 mg/kg/d (a real environmental exposure dose) was enough to cause placenta cuproptosis. CuCl2 exposure disrupts the TCA cycle, causes proteotoxic stress, increases Cu2+ ion import/decreases Cu2+ export, and results in the loss of Fe-S cluster proteins in mouse placenta, which induces placenta cuproptosis. Moreover, we also identified that Cu exposure down-regulates the expression levels of mmu-miR-3473b, which interacts with Dlst or Rtel1 mRNA and simultaneously positively regulates Dlst or Rtel1 expression, thereby disrupting the TCA cycle and resulting in the loss of Fe-S cluster proteins, and thus epigenetically regulates placental cuproptosis. Treatment with TTM (a cuproptosis inhibitor) suppressed placental cuproptosis and alleviated miscarriage in CuCl2-exposed mice. This work provides novel reproductive toxicity of Cu exposure in miscarriage or complete pregnancy loss by causing placental cuproptosis. This study also provides new ways for further studies on other toxicological effects of Cu and proposes a new approach for protection against Cu-induced reproductive diseases.
Assuntos
Aborto Espontâneo , Gravidez , Humanos , Feminino , Animais , Camundongos , Aborto Espontâneo/induzido quimicamente , Cobre/toxicidade , Placenta , Exposição Ambiental , Poluição Ambiental , ApoptoseRESUMO
Environmental benzo(a)pyrene (BaP) and its ultimate metabolite BPDE (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) are universal and inevitable persistent organic pollutants and endocrine disrupting chemicals. Angiogenesis in placental decidua plays a pivotal role in healthy pregnancy. Ferroptosis is a newly identified and iron-dependent cell death mode. However, till now, BaP/BPDE exposure, ferroptosis, defective angiogenesis, and miscarriage have never been correlated; and their regulatory mechanisms have been rarely explored. In this study, we used assays with BPDE-exposed HUVECs (human umbilical vein endothelial cells), decidual tissues and serum samples collected from unexplained recurrent miscarriage and their matched healthy control groups, and placental tissues of BaP-exposed mouse miscarriage model. We found that BaP/BPDE exposure caused ferroptosis and then directly suppressed angiogenesis and eventually induced miscarriage. In mechanism, BaP/BPDE exposure up-regulated free Fe2+ level and promoted lipid peroxidation and also up-regulated MARCHF1 (a novel E3 ligase of GPX4) level to promote the ubiquitination degradation of GPX4, both of which resulted in HUVEC ferroptosis. Furthermore, we also found that GPX4 protein down-regulated the protein levels of VEGFA and ANG-1, two key proteins function for angiogenesis, and thus suppressed HUVEC angiogenesis. In turn, supplement with GPX4 could suppress ferroptosis, recover angiogenesis, and alleviate miscarriage. Moreover, the levels of free Fe2+ and VEGFA in serum might predict the risk of miscarriage. Overall, this study uncovered the crosstalk among BaP/BPDE exposure, ferroptosis, angiogenesis, and miscarriage, discovering novel toxicological effects of BaP/BPDE on human reproductive health. This study also warned the public to avoid exposure to polycyclic aromatic hydrocarbons during pregnancy to effectively prevent adverse pregnancy outcomes.