Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 113(6): 1146-1159, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36575579

RESUMO

Marsdenia tenacissima is a medicinal plant widely distributed in the calcium-rich karst regions of southwest China. However, the lack of a reference genome has hampered the implementation of molecular techniques in its breeding, pharmacology and domestication. We generated the chromosome-level genome assembly in Apocynaceae using combined SMRT sequencing and Hi-C. The genome length was 381.76 Mb, with 98.9% of it found on 11 chromosomes. The genome contained 222.63 Mb of repetitive sequences and 21 899 predicted gene models, with a contig N50 of 6.57 Mb. Phylogenetic analysis revealed that M. tenacissima diverged from Calotropis gigantea at least 13.43 million years ago. Comparative genomics showed that M. tenacissima underwent ancient shared whole-genome duplication. This event, together with tandem duplication, contributed to 70.71% of gene-family expansion. Both pseudogene analysis and selective pressure calculations suggested calcium-related adaptive evolution in the M. tenacissima genome. Calcium-induced differentially expressed genes (DEGs) were mainly enriched in cell-wall-related processes. Domains (e.g. Fasciclin and Amb_all) and cis-elements (e.g. MYB and MYC) frequently occurred in the coding and promoter regions of cell-wall DEGs, respectively, and the expression levels of these genes correlated significantly with those of calcium-signal-related transcription factors. Moreover, calcium addition increased tenacissoside I, G and H contents. The availability of this high-quality genome provides valuable genomic information for genetic breeding and molecular design, and lends insights into the calcium adaptation of M. tenacissima in karst areas.


Assuntos
Marsdenia , Plantas Medicinais , Cálcio , Marsdenia/genética , Filogenia , Melhoramento Vegetal
2.
Plant J ; 116(6): 1842-1855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37665679

RESUMO

Perennial monocarpic mass flowering represents as a key developmental innovation in flowering time diversity in several biological and economical essential families, such as the woody bamboos and the shrubby Strobilanthes. However, molecular and genetic mechanisms underlying this important biodiversity remain poorly investigated. Here, we generated a full-length transcriptome resource incorporated into the BlueOmics database (http://blueomics.iflora.cn) for two Strobilanthes species, which feature contrasting flowering time behaviors. Using about 112 and 104 Gb Iso-seq reads together with ~185 and ~75 Gb strand-specific RNA seq data, we annotated 80 971 and 79 985 non-redundant full-length transcripts for the perennial polycarpic Strobilanthes tetrasperma and the perennial monocarpic Strobilanthes biocullata, respectively. In S. tetrasperma, we identified 8794 transcripts showing spatiotemporal expression in nine tissues. In leaves and shoot apical meristems at two developmental stages, 977 and 1121 transcripts were differentially accumulated in S. tetrasperma and S. biocullata, respectively. Interestingly, among the 33 transcription factors showing differential expression in S. tetrasperma but without differential expression in S. biocullata, three were involved potentially in the photoperiod and circadian-clock pathway of flowering time regulation (FAR1 RELATED SEQUENCE 12, FRS12; NUCLEAR FACTOR Y A1, NFYA1; PSEUDO-RESPONSE REGULATOR 5, PRR5), hence provides an important clue in deciphering the flowering diversity mechanisms. Our data serve as a key resource for further dissection of molecular and genetic mechanisms underpinning key biological innovations, here, the perennial monocarpic mass flowering.


Assuntos
Flores , Transcriptoma , Humanos , Transcriptoma/genética , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica , Folhas de Planta/metabolismo , RNA-Seq , Regulação da Expressão Gênica de Plantas/genética
3.
J Exp Bot ; 75(13): 3946-3958, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38642399

RESUMO

Plant life history is determined by two transitions, germination and flowering time, in which the phosphatidylethanolamine-binding proteins (PEBPs) FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) play key regulatory roles. Compared with the highly conserved TFL1-like genes, FT-like genes vary significantly in copy numbers in gymnosperms, and monocots within the angiosperms, while sporadic duplications can be observed in eudicots. Here, via a systematic analysis of the PEBPs in angiosperms with a special focus on 12 representative species featuring high-quality genomes in the order Lamiales, we identified a successive lineage-specific but systematic expansion of FT-like genes in the families of core Lamiales. The first expansion event generated FT1-like genes mainly via a core Lamiales-specific whole-genome duplication (cL-WGD), while a likely random duplication produced the FT2-like genes in the lineages containing Scrophulariaceae and the rest of the core Lamiales. Both FT1- and FT2-like genes were further amplified tandemly in some families. These expanded FT-like genes featured highly diverged expression patterns and structural variation, indicating functional diversification. Intriguingly, some core Lamiales contained the relict MOTHER OF FT AND TFL1 like 2 (MFT2) that probably expanded in the common ancestor of angiosperms. Our data showcase the highly dynamic lineage-specific expansion of the FT-like genes, and thus provide important and fresh evolutionary insights into the gene regulatory network underpinning flowering time diversity in Lamiales and, more generally, in angiosperms.


Assuntos
Evolução Molecular , Magnoliopsida , Filogenia , Proteínas de Plantas , Magnoliopsida/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Duplicação Gênica
4.
Gene ; 893: 147930, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38381505

RESUMO

Marsdenia tenacissima is a medicinal plant characterized by many flowers, few fruits, and a low fruit-setting rate. Exogenous auxins can improve the fruit-setting rate of plants; however, their impacts on M. tenacissima and regulatory mechanisms remain unclear. In this study, we conducted a field experiment to determine the fruit-setting rate, seed-setting rate, fruit size, and changes in transcriptional expression of related genes by spraying 10 and 50 mg·L-1 of 3-indoleacetic acid (IAA). The control plants were sprayed with distilled water. Our results indicated that the fruit-setting rate was 0.15 when treated with 10 mg·L-1 of IAA, which was 2.76-fold higher than that of the control. Compared with that of the control, the number of differentially expressed genes (DEGs) regulated by 10 mg·L-1 of IAA was 28.6-fold higher than that regulated by 50 mg·L-1 of IAA. These DEGs were closely related to hormone metabolism and fruit development. By transcriptome analysis, spraying 10 mg·L-1 of IAA increased the expressions of STP6, MYB17, and LAX3 and reduced those of CXE18, ILR1-like 3, and SAUR50; this possibly affected the ovule, embryo, and fruit development, thereby elevating the fruit-setting rate of M. tenacissima. Our results indicated that low IAA concentration increased the fruit-setting rate of M. tenacissima, providing theoretical and practical support for promoting the seed yield of M. tenacissima.


Assuntos
Aborto Induzido , Marsdenia , Feminino , Gravidez , Humanos , Frutas/genética , Ácidos Indolacéticos/farmacologia
5.
Plant Commun ; 5(7): 100878, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38475995

RESUMO

Brassicaceae represents an important plant family from both a scientific and economic perspective. However, genomic features related to the early diversification of this family have not been fully characterized, especially upon the uplift of the Tibetan Plateau, which was followed by increasing aridity in the Asian interior, intensifying monsoons in Eastern Asia, and significantly fluctuating daily temperatures. Here, we reveal the genomic architecture that accompanied early Brassicaceae diversification by analyzing two high-quality chromosome-level genomes for Meniocus linifolius (Arabodae; clade D) and Tetracme quadricornis (Hesperodae; clade E), together with genomes representing all major Brassicaceae clades and the basal Aethionemeae. We reconstructed an ancestral core Brassicaceae karyotype (CBK) containing 9 pseudochromosomes with 65 conserved syntenic genomic blocks and identified 9702 conserved genes in Brassicaceae. We detected pervasive conflicting phylogenomic signals accompanied by widespread ancient hybridization events, which correlate well with the early divergence of core Brassicaceae. We identified a successive Brassicaceae-specific expansion of the class I TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) gene family, which encodes enzymes with essential regulatory roles in flowering time and embryo development. The TPS1s were mainly randomly amplified, followed by expression divergence. Our results provide fresh insights into historical genomic features coupled with Brassicaceae evolution and offer a potential model for broad-scale studies of adaptive radiation under an ever-changing environment.


Assuntos
Brassicaceae , Genoma de Planta , Cariótipo , Filogenia , Brassicaceae/genética , Evolução Molecular , Cromossomos de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA