Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Ecol Appl ; 34(5): e2985, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772563

RESUMO

A substantial body of empirical evidence suggests that anthropogenic disturbance can affect the structure and function of grassland ecosystems. Despite this, few studies have elucidated the mechanisms through which grazing and mowing, the two most widespread land management practices, affect the stability of natural grassland communities. In this study, we draw upon 9 years of field data from natural grasslands in northern China to investigate the effects of gazing and mowing on community stability, specifically focusing on community aboveground net primary productivity (ANPP) and dominance, which are two major biodiversity mechanisms known to characterize community fluctuations. We found that both grazing and mowing reduced ANPP in comparison to areas enclosed by fencing. Grazing reduced community stability by increasing the likelihood of single-species dominance and decreasing the relative proportion of nondominant species. In contrast, mowing reduced the productivity of the dominant species but increased the productivity of nondominant species. As a consequence, mowing improved the overall community stability by increasing the stability of nondominant species. Our study provides novel insight into understanding of the relationship between community species fluctuation-stability, with implications for ecological research and ecosystem management in natural grasslands.


Assuntos
Pradaria , China , Animais , Herbivoria , Biodiversidade , Conservação dos Recursos Naturais
2.
J Environ Manage ; 357: 120765, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579467

RESUMO

Livestock grazing strongly influences the accumulation of soil organic carbon (SOC) in grasslands. However, whether the changes occurring in SOC content under different intensities of continuous summer long grazing are associated with the changes in microbially-derived necromass C remains unclear. Here, we established a sheep grazing experiment in northern China in 2004 with four different stocking rates. Soil samples were collected after 17 years of grazing and analyzed for physical, chemical, and microbial characteristics. Grazing decreased SOC and microbial necromass carbon (MNC). Notably, grazing also diminished contributions of MNC to SOC. MNC declined with decreasing plant carbon inputs with degradation of the soil environment. Direct reductions in microbial necromass C, which indirectly reduced SOC, resulted from reduced in plant C inputs and microbial abundance and diversity. Our study highlights the key role of stocking rate in governing microbial necromass C and SOC and the complex relationships these variables.


Assuntos
Pradaria , Solo , Animais , Ovinos , Solo/química , Carbono/análise , Estações do Ano , Nitrogênio/análise , Plantas , China , Microbiologia do Solo
3.
BMC Genomics ; 24(1): 750, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057756

RESUMO

BACKGROUND: Improving the egg production of goose is a crucial goal of breeding, because genetics is the key factor affecting egg production. Thus, we sequenced the genomes of 55 Chinese indigenous geese from six breeds, which were divided into the high egg-laying group (ZE, HY, and SC) and low egg-laying group (ZD, LH, and ST). Based on the results of the inter-population selection signal analysis, we mined the selected genome regions in the high egg-laying germplasm population to identify the key candidate genes affecting the egg-laying traits. RESULTS: According to the whole-genome sequencing data, the average sequencing depth reached 11.75X. The genetic relationships among those six goose breeds coincided with the breed's geographical location. The six selective signal detection results revealed that the most selected regions were located on Chr2 and Chr12. In total, 12,051 single-nucleotide polymorphism (SNP) sites were selected in all six methods. Using the enrichment results of candidate genes, we detected some pathways involved in cell differentiation, proliferation, and female gonadal development that may cause differences in egg production. Examples of these pathways were the PI3K-Akt signaling pathway (IGF2, COMP, and FGFR4), animal organ morphogenesis (IGF2 and CDX4), and female gonad development (TGFB2). CONCLUSION: On analyzing the genetic background of six local goose breeds by using re-sequencing data, we found that the kinship was consistent with their geographic location. 107 egg-laying trait-associated candidate genes were mined through six selection signal analysis. Our study provides a critical reference for analyzing the molecular mechanism underlying differences in reproductive traits and molecular breeding of geese.


Assuntos
Gansos , Fosfatidilinositol 3-Quinases , Animais , Feminino , Gansos/genética , Fosfatidilinositol 3-Quinases/genética , Oviposição , Genoma , Polimorfismo de Nucleotídeo Único
4.
Oecologia ; 201(1): 259-268, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36507970

RESUMO

Mowing for hay is an important land use in grasslands that is affected by precipitation variability, due to the water-limited nature of these ecosystems. Past land use and precipitation conditions can have legacy effects on ecosystem functions, potentially altering responses to both mowing and precipitation. Nonetheless, it is still unclear how natural variation in precipitation will affect plant responses to changes in mowing intensity. We conducted a seven-year field experiment with three mowing intensity treatments compared to the traditional mowing intensity (5 cm stubble height) as a control: increased mowing (2 cm stubble), decreased mowing (8 cm stubble) and ceased mowing. Decreased mowing increased both plant aboveground net primary productivity [ANPP] and forage yield across the whole community, driven by increases in graminoids, mainly owing to the positive response of plants to precipitation. Both mowing disturbance and precipitation variability had legacy effects on plant ANPP; however, these responses differed among the whole community, graminoid, and forb levels. Current-year community-wide ANPP [ANPPn] was positively associated with current-year precipitation [PPTn] in all mowing treatments, driven by positive precipitation responses of the dominant graminoids. For forbs, however, ANPPn was negatively associated with prior-year growing season precipitation [PPTn-1] across mowing treatments, potentially due to lagged competition with the dominant graminoids. Our results suggest that the response of the dominant graminoids is the primary factor determining the response of ANPP to mowing and precipitation variability in these grassland ecosystems, and highlight that decreasing mowing intensity may maximize both herder's income and grassland sustainability.


Assuntos
Ecossistema , Pradaria , Poaceae/fisiologia , Chuva , Plantas
5.
J Environ Manage ; 327: 116882, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455443

RESUMO

The 'Grain-for-Green' program in China provides a valuable opportunity to investigate whether spontaneous restoration can reverse the deterioration of grassland ecosystem functions. Previous studies have focused on individual ecosystem functions, but the response of and mechanisms driving variation in ecosystem multifunctionality (EMF) during restoration are poorly understood. Here, we quantified EMF using productivity, nutrient cycling, and water regulation functions along abandoned croplands in a recovery chronosequence (5, 15 and 20 years) and in natural grasslands in the desert steppe and typical steppe. We also analyzed the effects of plant and microbial diversity and an abiotic factor (soil pH) on EMF. Our results showed that EMF increased gradually concomitant with recovery time, shifting toward EMF values comparable to those in natural grasslands in both desert and typical steppe. Similar results were found for the productivity function, the water regulation function, and soil organic carbon. However, even after 20 years of restoration, EMF did not reach the levels observed in natural grasslands. Structural equation modeling showed that the driving mechanisms of EMF differed between the two steppe types. Specifically, in the desert steppe, plant diversity, especially the diversity of perennial graminoids and perennial herbs, had a positive effect on EMF, but in the typical steppe, soil bacterial diversity had a negative effect, while soil pH had a positive effect on EMF. Our results demonstrated that spontaneous grassland restoration effectively enhanced EMF, and emphasized the importance of biodiversity and soil pH in regulating EMF during secondary succession. This work provides important insights for grassland ecosystem management in arid and semi-arid regions.


Assuntos
Ecossistema , Solo , Solo/química , Carbono/análise , Biodiversidade , China , Água , Produtos Agrícolas , Concentração de Íons de Hidrogênio , Pradaria
6.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1212-1217, 2023 Mar.
Artigo em Zh | MEDLINE | ID: mdl-37005805

RESUMO

Rhizome rot is one of the main disease in the cultivation of Polygonatum cyrtonema, and it is also a global disease which seriously occurs on the perennial medicinal plants such as Panax notoginseng and P. ginseng. There is no effective control method at present. To identify the effects of three biocontrol microbes(Penicillium oxalicum QZ8, Trichoderma asperellum QZ2, and Brevibacillus amyloliquefaciens WK1) on the pathogens causing rhizome rot of P. cyrtonema, this study verified six suspected pathogens for their pathogenicity on P. cyrtonema. The result showed that Fusarium sp. HJ4, Colletotrichum sp. HJ4-1, and Phomopsis sp. HJ15 were the pathogens of rhizome rot of P. cyrtonema, and it was found for the first time that Phomopsis sp. could cause rhizome rot P. cyrtonema. Furthermore, the inhibitory effects of biocontrol microbes and their secondary metabolites on three pathogens were determined by confrontation culture. The results showed that the three tested biocontrol microbes significantly inhibited the growth of three pathogens. Moreover, the secondary metabolites of T. asperellum QZ2 and B. amyloliquefaciens WK1 showed significant inhibition against the three pathogens(P<0.05), and the effect of B. amyloliquefaciens WK1 sterile filtrate was significantly higher than that of high tempe-rature sterilized filtrate(P<0.05). B. amyloliquefaciens WK1 produced antibacterial metabolites to inhibit the growth of pathogens, and the growth inhibition rate of its sterile filtrate against three pathogens ranged from 87.84% to 93.14%. T. asperellum QZ2 inhibited the growth of pathogens through competition and antagonism, and P. oxalicum QZ8 exerted the inhibitory effect through competition. The research provides new ideas for the prevention and treatment of rhizome rot of P. cyrtonema and provides a basis for the di-sease control in other crops.


Assuntos
Polygonatum , Rizoma
7.
Plant Cell Environ ; 44(2): 613-628, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33103781

RESUMO

Although interactions between plants and microbes at the plant-soil interface are known to be important for plant nutrient acquisition, relatively little is known about how root exudates contribute to nutrient exchange over the course of plant development. In this study, root exudates from slow- and fast-growing stages of Arabidopsis thaliana plants were collected, chemically analysed and then applied to a sandy nutrient-depleted soil. We then tracked the impacts of these exudates on soil bacterial communities, soil nutrients (ammonium, nitrate, available phosphorus and potassium) and plant growth. Both pools of exudates shifted bacterial community structure. GeoChip analyses revealed increases in the functional gene potential of both exudate-treated soils, with similar responses observed for slow-growing and fast-growing plant exudate treatments. The fast-growing stage root exudates induced higher nutrient mineralization and enhanced plant growth as compared to treatments with slow-growing stage exudates and the control. These results suggest that plants may adjust their exudation patterns over the course of their different growth phases to help tailor microbial recruitment to meet increased nutrient demands during periods demanding faster growth.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Exsudatos de Plantas/química , Microbiologia do Solo , Solo/normas , Retroalimentação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia
8.
Environ Sci Technol ; 55(11): 7256-7265, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34013726

RESUMO

Desert steppe, a unique ecotone between steppe and desert in Eurasia, is considered highly vulnerable to global change. However, the long-term impact of warming and nitrogen deposition on plant biomass production and ecosystem carbon exchange in a desert steppe remains unknown. A 12-year field experiment was conducted in a Stipa breviflora desert steppe in northern China. A split-design was used, with warming simulated by infrared radiators as the primary factor and N addition as the secondary factor. Our long-term experiment shows that warming did not change net ecosystem exchange (NEE) or total aboveground biomass (TAB) due to contrasting effects on C4 (23.4% increase) and C3 (11.4% decrease) plant biomass. However, nitrogen addition increased TAB by 9.3% and NEE by 26.0% by increasing soil available N content. Thus, the studied desert steppe did not switch from a carbon sink to a carbon source in response to global change and positively responded to nitrogen deposition. Our study indicates that the desert steppe may be resilient to long-term warming by regulating plant species with contrasting photosynthetic types and that nitrogen deposition could increase plant growth and carbon sequestration, providing negative feedback on climate change.


Assuntos
Ecossistema , Nitrogênio , Carbono , China , Nitrogênio/análise , Solo
9.
Genomics ; 112(3): 2186-2193, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31866420

RESUMO

CircRNA is a specific type of non-coding RNA that has been shown to have an important role in mammary gland (MG) activity, but no study of MG circRNA activity in sheep so far. In this study, the expression profile of circRNAs was investigated using RNA-Seq in MG parenchyma at peak lactation from Small-Tailed Han sheep and Gansu Alpine Merino sheep with phenotypic differences in milk yield and components. A total of 4, 906 circRNAs were found and 33 of these were differentially expressed between breeds. GO and KEGG results showed that the parental genes of differentially expressed circRNAs were mainly enriched in heterocyclic compound binding, kinase activity, adherens junction, the TGF-ß signaling pathway, and the MAPK signaling pathway. This study provides an overview of circRNA expression in the ovine MG and the interaction between some key circRNAs and their target miRNAs. It improves our knowledge of the role of circRNA in sheep milk synthesis.


Assuntos
Lactação/genética , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , RNA Circular/metabolismo , Ovinos/genética , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , RNA Circular/química , RNA-Seq , Ovinos/metabolismo
10.
BMC Plant Biol ; 20(1): 166, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293273

RESUMO

BACKGROUND: Rhizosphere microbiome is dynamic and influenced by environment factors surrounded including pathogen invasion. We studied the effects of Ralstonia solanacearum pathogen abundance on rhizosphere microbiome and metabolome by using high throughput sequencing and GC-MS technology. RESULTS: There is significant difference between two rhizosphere bacterial communities of higher or lower pathogen abundance, and this difference of microbiomes was significant even ignoring the existence of pathogen. Higher pathogen abundance decreased the alpha diversity of rhizosphere bacterial community as well as connections in co-occurrence networks. Several bacterial groups such as Bacillus and Chitinophaga were negatively related to the pathogen abundance. The GC-MS analysis revealed significantly different metabolomes in two groups of rhizosphere soils, i.e., the rhizosphere soil of lower harbored more sugars such as fructose, sucrose and melibiose than that in high pathogen abundance. CONCLUSIONS: The dissimilar metabolomes in two rhizosphere soils likely explained the difference of bacterial communities with Mantel test. Bacillus and Chitinophaga as well as sugar compounds negatively correlated with high abundance of pathogen indicated their potential biocontrol ability.


Assuntos
Ralstonia solanacearum/metabolismo , Rizosfera , Solanum lycopersicum/microbiologia , Bacillus/metabolismo , Bacteroidetes/metabolismo , Metaboloma , Microbiota , Controle Biológico de Vetores , Microbiologia do Solo
11.
Chem Rec ; 20(1): 2-9, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30946531

RESUMO

It's of great importance for construction of upconversion nanoparticles (UCNPs)/semiconductor heterostructures activated by near infrared light, which have gained worldwide research interests owing to important applications in photocatalysis, solar cells, nanomedicine, and etc. In this review, we highlight the synthetic strategies developed to fabricate upconversion nanoparticles based heterostructures, such as chemical epitaxial growth method, electrospinning technique, self-assembly method, hydrothermal method, and etc. Numerous examples are given concerning the use of the strategies to fabricate various microstructures/nanostructures incorporated with UCNPs and semiconductors materials. The latest advances and perspectives in the synthetic strategies and preparation of this kind of composite nanostructures are made.

12.
Langmuir ; 35(2): 489-494, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30561206

RESUMO

Monodisperse sub-10 nm core-shell nanocrystals have been extensively studied owing to their important applications in catalysis, bioimaging, nanomedicine, and so on. In this work, an amorphous shell component crystallization strategy has been proposed to prepare high quality sub-10 nm NaYF4:Yb/Er@NaGdF4 core-shell nanocrystals successfully via a sequential growth process. The dynamic light scattering technique has been used to investigate the secondary nucleation and growth process forming the core-shell nanocrystals. The size and morphology evolution of the core-shell nanocrystals reveals that the secondary nucleation of the shell component is unavoidable after hot-injecting the shell precursor at high temperatures, which was followed by dissolution and recrystallization (an Ostwald ripening process) to partially produce the core-shell nanocrystals. The present study demonstrates that the size of seed nanocrystals and the injection temperature of the shell component precursor play a vital role in the formation of core-shell nanostructures completely. This work will provide an alternative strategy for precisely controlling the fabrication of sub-10 nm core-shell nanostructures for various applications.

13.
Langmuir ; 34(31): 9264-9271, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30005165

RESUMO

Magnetically recyclable photocatalyst has drawn considerable research interest because of its importance in practical applications. Herein, we demonstrate a facile hydrothermal process to fabricate magnetic core-shell microspheres of Fe3O4@Zn xCd1- xS, successfully using Fe3O4@ZnS core-shell microspheres as sacrificed templates. The as-prepared magnetically recyclable photocatalysts show efficient photochemical reduction of Cr(VI) under irradiation of visible light. The photochemical reduction mechanism has been studied to illustrate the reduction-oxidation ability of the photogenerated electrons (e-) and holes (h+), which play an important role in the reduction of Cr(VI) to Cr(III) and oxidation of organic dyes. The as-prepared Fe3O4@Zn0.55Cd0.45S core-shell microspheres show good chemical stability and only a slight decrease in the photocatalytic activity after four recycles. In particular, the as-prepared photocatalysts could be easily recycled and reused by an external magnetic field. Therefore, this work would provide a facile chemical approach for controlled synthesis of magnetic nanostructures combined with alloyed semiconductor photocatalysts for wastewater treatment.

14.
J Nanosci Nanotechnol ; 18(8): 5756-5762, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458636

RESUMO

In this paper, three-dimensional self-assembly graphene (3D-G) was prepared by the hydrothermal synthesis method, and 3D-G was designed as a suitable biological scaffold for cell growth and adhesion. The shape of 3D-G was tuned by adjusting the hydrothermal reaction time (6 h, 12 h, 18 h and 24 h). Then the scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses were used to characterize the microstructure and component of 3D-G, which showed that the length, diameter, pore size and defects of 3D-G were all decreased as the reaction-time increased. In vitro cell culture experiment, the cytocompatibility of 3D-G prepared under different hydrothermal reaction time was assessed using mouse fibroblast cells (L929) via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT). Meanwhile, the cell adhesion, growth and proliferation were also observed by SEM. These results showed that the 3D-G with the reaction time of 24 h (3D-G/24 h) had the best cytocompatibility, which could be used as tissue scaffolds for cell growth.


Assuntos
Alicerces Teciduais , Animais , Grafite , Microscopia Eletrônica de Varredura , Nanopartículas , Tempo de Reação , Espectroscopia de Infravermelho com Transformada de Fourier
15.
J Sci Food Agric ; 96(10): 3484-91, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26572692

RESUMO

BACKGROUND: The majority of phenolic acids in wheat bran are bound to the cell walls. Hence, a high proportion of phenolic acids cannot be extracted with conventional extraction methods. This study aimed to investigate the efficiency of steam explosion pre-treatment in increasing the extractability of phenolic compounds from wheat bran. RESULTS: Bound phenolic acids (BPA) can be released by steam explosion-assisted extraction. Within the experimental range, soluble free phenolic acids (FPA) and soluble conjugated phenolic acids (CPA) increased gradually with residence time and temperature. After steam explosion at 215 °C for 120 s, the total FPA and CPA reached 6671.8 and 2578.6 µg GAE g(-1) bran, respectively, which was about 39-fold and seven-fold higher than that of the untreated sample. Ferulic acid, the major individual phenolic acids in bran, increased from 55.7 to 586.3 µg g(-1) for FPA, and from 44.9 to 1108.4 µg g(-1) for CPA. The antioxidant properties of FPA and CPA extracts were significantly improved after treated. Correlation analysis indicated that the antioxidant capacity was in close relationship with phenolic content in FPA and CPA. CONCLUSION: Steam explosion pre-treatment could be effectively used to release of BPA and enhance the antioxidant capacity of wheat bran. © 2015 Society of Chemical Industry.


Assuntos
Antioxidantes/análise , Fibras na Dieta/análise , Fenóis/análise , Vapor , Manipulação de Alimentos/métodos , Fenóis/isolamento & purificação , Extratos Vegetais/química , Sementes/química
16.
J Environ Manage ; 152: 177-82, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25687702

RESUMO

Semi-nomadic pastoralism was replaced by sedentary pastoralism in Inner Mongolia during the 1960's in response to changes in land use policy and increasing human population. Large increases in numbers of livestock and pastoralist households (11- and 9-fold, respectively) during the past 60 yrs have variously degraded the majority of grasslands in Inner Mongolia (78 M ha) and jeopardize the livelihoods of 24 M human inhabitants. A prevailing strategy for alleviating poverty and grassland degradation emphasizes intensification of livestock production systems to maintain both pastoral livelihoods and large livestock numbers. We consider this strategy unsustainable because maximization of livestock revenue incurs high supplemental feed costs, marginalizes net household income, and promotes larger flock sizes to create a positive feedback loop driving grassland degradation. We offer an alternative strategy that increases both livestock production efficiency and net pastoral income by marketing high quality animal products to an increasing affluent Chinese economy while simultaneously reducing livestock impacts on grasslands. We further caution that this strategy be designed and assessed within a social-ecological framework capable of coordinating market expansion for livestock products, sustainable livestock carrying capacities, modified pastoral perceptions of success, and incentives for ecosystem services to interrupt the positive feedback loop that exists between subsistence pastoralism and grassland degradation in Inner Mongolia.


Assuntos
Criação de Animais Domésticos/métodos , Pobreza/prevenção & controle , Criação de Animais Domésticos/economia , Animais , China , Conservação dos Recursos Naturais , Ecossistema , Pradaria , Humanos
17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(11): 3155-60, 2015 Nov.
Artigo em Zh | MEDLINE | ID: mdl-26978927

RESUMO

As an important indicator of forage production, aboveground biomass will directly illustrate the growth of forage grass. Therefore, Real-time monitoring biomass of forage grass play a crucial role in performing suitable grazing and management in artificial and natural grassland. However, traditional sampling and measuring are time-consuming and labor-intensive. Recently, development of hyperspectral remote sensing provides the feasibility in timely and nondestructive deriving biomass of forage grass. In the present study, the main objectives were to explore the robustness of published and optimized spectral indices in estimating biomass of forage grass in natural and artificial pasture. The natural pasture with four grazing density (control, light grazing, moderate grazing and high grazing) was designed in desert steppe, and different forage cultivars with different N rate were conducted in artificial forage fields in Inner Mongolia. The canopy reflectance and biomass in each plot were measured during critical stages. The result showed that, due to the influence in canopy structure and biomass, the canopy reflectance have a great difference in different type of forage grass. The best performing spectral index varied in different species of forage grass with different treatments (R² = 0.00-0.69). The predictive ability of spectral indices decreased under low biomass of desert steppe, while red band based spectral indices lost sensitivity under moderate-high biomass of forage maize. When band combinations of simple ratio and normalized difference spectral indices were optimized in combined datasets of natural and artificial grassland, optimized spectral indices significant increased predictive ability and the model between biomass and optimized spectral indices had the highest R² (R² = 0.72) compared to published spectral indices. Sensitive analysis further confirmed that the optimized index had the lowest noise equivalent and were the best performing index in estimating biomass. In conclusion, optimizing wave-bands combination was a promising algorithm for improving prediction abilities of biomass for forage grass.


Assuntos
Biomassa , Poaceae , Ração Animal , China , Pradaria , Análise Espectral
18.
Environ Manage ; 53(2): 266-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24158269

RESUMO

Proper grazing management practices can generate corresponding compensatory effects on plant community production, which may reduce inter-annual variability of productivity in some grassland ecosystems. However, it remains unclear how grazing influences plant community attributes and the variability of standing crop. We examined the effects of sheep grazing at four stocking rate treatments [control, 0 sheep ha(-1) month(-1); light (LG), 0.15 sheep ha(-1 )month(-1); moderate (MG), 0.30 sheep ha(-1) month(-1); and heavy (HG), 0.45 sheep ha(-1) month(-1)] on standing crop at the community level and partitioned by species and functional groups, in the desert steppe of Inner Mongolia, China. The treatments were arranged in a completely randomized block design over a 9-year period. Standing crop was measured every August from 2004 to 2012. Peak standing crop decreased (P < 0.05) with increasing stocking rate; peak standing crop in the HG treatment decreased 40 % compared to the control. May-July precipitation explained at least 76 % of the variation in peak standing crop. MG and HG treatments resulted in a decrease (P < 0.05) in shrubs, semi-shrubs, and perennials forbs, and an increase (P < 0.05) in perennial bunchgrasses compared to the control. The coefficients of variation at plant functional group and species level in the LG and MG treatments were lower (P < 0.05) than in the control and HG treatments. Peak standing crop variability of the control and HG community were greatest, which suggested that LG and MG have greater ecosystem stability.


Assuntos
Ecossistema , Poaceae/crescimento & desenvolvimento , Ovinos/fisiologia , Animais , Conservação dos Recursos Naturais , Herbivoria , Mongólia , Chuva
19.
Sci Rep ; 14(1): 13203, 2024 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851833

RESUMO

This study aims to refine clinical designs within clear aligner therapy, exploring the appropriate ratio of anterior tooth retraction to intrusion under maximum anchorage. Using a three-dimensional finite element model and evaluating 19 load scenarios with first premolar extraction, the research identifies the optimal force angle for anterior tooth retraction as 45 to 55°. For clinical planning, it is recommended to design a retraction of 0.19 mm combined with an intrusion of 0.16 mm to achieve anterior tooth retraction. This investigation is crucial for enhancing understanding of biomechanical principles in clear aligner orthodontics, offering significant insights for effective treatments.


Assuntos
Análise de Elementos Finitos , Técnicas de Movimentação Dentária , Humanos , Técnicas de Movimentação Dentária/métodos , Fenômenos Biomecânicos , Dente Pré-Molar/fisiologia , Desenho de Aparelho Ortodôntico , Imageamento Tridimensional
20.
Chem Biol Interact ; 391: 110896, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301882

RESUMO

Aldo-keto reductase-7A (AKR7A) subfamily belongs to the AKR superfamily and is associated with detoxification of aldehydes and ketones by reducing them to the corresponding alcohols. So far five members of ARK7A subfamily are identified: two human members-AKR7A2 and AKR7A3, two rat members-AKR7A1 and AKR7A4, and one mouse member-AKR7A5, which are implicated in several diseases including neurodegenerative diseases and cancer. AKR7A members share similar crystal structures and protein functional domains, but have different substrate specificity, inducibility and biological functions. This review will summarize the research progress of AKR7A members in substrate specificity, tissue distribution, inducibility, crystal structure and biological function. The significance of AKR7A members in the occurrence and development of diseases will also be discussed.


Assuntos
Aldeído Redutase , Fígado , Ratos , Camundongos , Animais , Humanos , Aldo-Ceto Redutases/metabolismo , Fígado/metabolismo , Aldeído Redutase/metabolismo , Oxirredutases do Álcool/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA