Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 611(7936): 479-484, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289346

RESUMO

Conducting organic materials, such as doped organic polymers1, molecular conductors2,3 and emerging coordination polymers4, underpin technologies ranging from displays to flexible electronics5. Realizing high electrical conductivity in traditionally insulating organic materials necessitates tuning their electronic structure through chemical doping6. Furthermore, even organic materials that are intrinsically conductive, such as single-component molecular conductors7,8, require crystallinity for metallic behaviour. However, conducting polymers are often amorphous to aid durability and processability9. Using molecular design to produce high conductivity in undoped amorphous materials would enable tunable and robust conductivity in many applications10, but there are no intrinsically conducting organic materials that maintain high conductivity when disordered. Here we report an amorphous coordination polymer, Ni tetrathiafulvalene tetrathiolate, which displays markedly high electronic conductivity (up to 1,200 S cm-1) and intrinsic glassy-metallic behaviour. Theory shows that these properties are enabled by molecular overlap that is robust to structural perturbations. This unusual set of features results in high conductivity that is stable to humid air for weeks, pH 0-14 and temperatures up to 140 °C. These findings demonstrate that molecular design can enable metallic conductivity even in heavily disordered materials, raising fundamental questions about how metallic transport can exist without periodic structure and indicating exciting new applications for these materials.

2.
J Am Chem Soc ; 145(10): 5664-5673, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867838

RESUMO

Transition metal-oxo complexes are key intermediates in a variety of oxidative transformations, notably C-H bond activation. The relative rate of C-H bond activation mediated by transition metal-oxo complexes is typically predicated on substrate bond dissociation free energy in cases with a concerted proton-electron transfer (CPET). However, recent work has demonstrated that alternative stepwise thermodynamic contributions such as acidity/basicity or redox potentials of the substrate/metal-oxo may dominate in some cases. In this context, we have found basicity-governed concerted activation of C-H bonds with the terminal CoIII-oxo complex PhB(tBuIm)3CoIIIO. We have been interested in testing the limits of such basicity-dependent reactivity and have synthesized an analogous, more basic complex, PhB(AdIm)3CoIIIO, and studied its reactivity with H-atom donors. This complex displays a higher degree of imbalanced CPET reactivity than PhB(tBuIm)3CoIIIO with C-H substrates, and O-H activation of phenol substrates displays mechanistic crossover to stepwise proton transfer-electron transfer (PTET) reactivity. Analysis of the thermodynamics of proton transfer (PT) and electron transfer (ET) reveals a distinct thermodynamic crossing point between concerted and stepwise reactivity. Furthermore, the relative rates of stepwise and concerted reactivity suggest that maximally imbalanced systems provide the fastest CPET rates up to the point of mechanistic crossover, which results in slower product formation.

3.
Angew Chem Int Ed Engl ; 61(45): e202207834, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36070987

RESUMO

The emergence of conductive 2D and less commonly 3D coordination polymers (CPs) and metal-organic frameworks (MOFs) promises novel applications in many fields. However, the synthetic parameters for these electronically complex materials are not thoroughly understood. Here we report a new 3D semiconducting CP Fe5 (C6 O6 )3 , which is a fusion of 2D Fe-semiquinoid materials and 3D cubic Fex (C6 O6 )y materials, by using a different initial redox-state of the C6 O6 linker. The material displays high electrical conductivity (0.02 S cm-1 ), broad electronic transitions, promising thermoelectric behavior (S2 σ=7.0×10-9  W m-1 K-2 ), and strong antiferromagnetic interactions at room temperature. This material illustrates how controlling the oxidation states of redox-active components in conducting CPs/MOFs can be a "pre-synthetic" strategy to carefully tune material topologies and properties in contrast to more commonly encountered post-synthetic modifications.

4.
J Am Chem Soc ; 142(52): 21634-21639, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33320644

RESUMO

High-valent transition metal-oxo, -peroxo, and -superoxo complexes are crucial intermediates in both biological and synthetic oxidation of organic substrates, water oxidation, and oxygen reduction. While high-valent oxygenated complexes of Mn, Fe, Co, and Cu are increasingly well-known, high-valent oxygenated Ni complexes are comparatively rarer. Herein we report the isolation of such an unusual high-valent species in a thermally unstable NiIII2(µ-1,2-peroxo) complex, which has been characterized using single-crystal X-ray diffraction and X-ray absorption, NMR, and UV-vis spectroscopies. Reactivity studies show that this complex is stable toward dissociation of oxygen but reacts with simple nucleophiles and electrophiles.

5.
J Am Chem Soc ; 139(12): 4250-4253, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28282120

RESUMO

Photoredox catalysis has become an essential tool in organic synthesis because it enables new routes to important molecules. However, the best available molecular catalysts suffer from high catalyst loadings and rely on precious metals. Here we show that colloidal nanocrystal quantum dots (QDs) can serve as efficient and robust, precious-metal free, photoassisted redox catalysts. A single-sized CdSe quantum dot (3.0 ± 0.2 nm) can replace several different dye catalysts needed for five different photoredox reactions (ß-alkylation, ß-aminoalkylation, dehalogenation, amine arylation, and decarboxylative radical formation). Even without optimization of the QDs or the reaction conditions, efficiencies rivaling those of the best available metal dyes were obtained.

6.
Chem Commun (Camb) ; 56(57): 7861-7864, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32021999

RESUMO

We report four-coordinate nickel(ii)-methyl complexes of tris-carbene borate ligands which adopt rare seesaw geometries. Experimental and computational results suggest the structural distortion from threefold symmetry results from a combination of electronic stabilization of the singlet state, strong field donors, and constrained angles from the chelating ligand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA