Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(4): 046602, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355953

RESUMO

Metal-insulator transitions driven by magnetic fields have been extensively studied in 2D, but a 3D theory is still lacking. Motivated by recent experiments, we develop a scaling theory for the metal-insulator transitions in the strong-magnetic-field quantum limit of a 3D system. By using a renormalization-group calculation to treat electron-electron interactions, electron-phonon interactions, and disorder on the same footing, we obtain the critical exponent that characterizes the scaling relations of the resistivity to temperature and magnetic field. By comparing the critical exponent with those in a recent experiment [F. Tang et al., Nature (London) 569, 537 (2019)NATUAS0028-083610.1038/s41586-019-1180-9], we conclude that the insulating ground state was not only a charge-density wave driven by electron-phonon interactions but also coexisting with strong electron-electron interactions and backscattering disorder. We also propose a current-scaling experiment for further verification. Our theory will be helpful for exploring the emergent territory of 3D metal-insulator transitions under strong magnetic fields.

2.
Phys Rev Lett ; 127(17): 176601, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739297

RESUMO

Topological insulators (TIs) are an exciting discovery because of their robustness against disorder and interactions. Recently, second-order TIs have been attracting increasing attention, because they host topologically protected 1D hinge states in 3D or 0D corner states in 2D. A significantly critical issue is whether the second-order TIs also survive interactions, but it is still unexplored. We study the effects of weak Coulomb interactions on a 3D second-order TI, with the help of renormalization-group calculations. We find that the 3D second-order TIs are always unstable, suffering from two types of topological phase transitions. One is from second-order TI to TI, the other is to normal insulator. The first type is accompanied by emergent time-reversal and inversion symmetries and has a dynamical critical exponent κ=1. The second type does not have the emergent symmetries but has nonuniversal dynamical critical exponents κ<1. Our results may inspire more inspections on the stability of higher-order topological states of matter and related novel quantum criticalities.

3.
Phys Rev Lett ; 130(21): 219702, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295096
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA