Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 224: 112634, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34392153

RESUMO

Nickel is a heavy metal element extensively distributed in the environment and widely used in modern life. Divalent nickel is one of the most widespread forms of nickel and has been reported as toxic to various tissues. However, whether exposure to divalent nickel negatively affects ovarian homeostasis and oocyte quality remains unclear. In this study, we found that 3 weeks of nickel sulfate exposure affected body growth and decreased the weight and coefficient of the ovary, and increased atretic follicles exhibiting enhanced apoptosis in granulosa cells. Further studies have found that nickel sulfate triggered ovarian fibrosis and inflammation via transforming growth factor-ß1 and nuclear factor-κB pathways, and reduced oocyte development ability. In addition, nickel sulfate increased the level of reactive oxygen species, which induced DNA damage and early apoptosis. Moreover, it was found that nickel sulfate caused damage to the mitochondria showing aberrant morphology, distribution and membrane potential while decreased levels of histone methylation. To summarize, our results indicated that nickel sulfate exposure triggered ovarian fibrosis and inflammation and caused structural and functional disorders of mitochondria in oocytes, which consequently disturbed ovarian homeostasis and follicle development and decreased oocyte quality.

2.
Toxicology ; 486: 153450, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739938

RESUMO

Cobalt is a kind of heavy metal which is widely used in petrochemical and biomedical industries. Animal studies have reported that cobalt would exert systemic toxicity, but its effects on the ovarian function in mammals, especially for oocyte quality remains unknown. In the present study, we report that cobalt chloride treatment affects ovary coefficient and follicular growth. Oocytes in cobalt chloride exposed mice exhibited a decreased development potential, with the evidence of decreased occurrence rate of germ vesicle breakdown and polar body extrusion. Besides, cobalt chloride disorganized meiotic spindle formation and movement, mechanically associated with affecting TACC3 and Ac-a-tubulin levels, and disturbing actin reorganization. In addition, cobalt chloride exposure result in mitochondrial cristae structures disappear, cluster distribution and potential depolarization. Altogether, these findings suggest that cobalt chloride impairs the ovarian follicle growth and affects oocyte development by disrupted spindle assembly and mitochondrial function.


Assuntos
Oócitos , Fuso Acromático , Feminino , Animais , Camundongos , Meiose , Cobalto/metabolismo , Mamíferos
3.
Chemosphere ; 286(Pt 1): 131625, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34303901

RESUMO

Captan is a non-systematic fungicide widely used in agricultural production, and its residues have been found in the environment and daily diet. Previous studies confirmed that captan exerts several toxic effects on tissues, but its effect on the mammalian female reproductive system is unclear. In current study, we reported that captan affected mouse ovarian homeostasis and disrupted female hormone receptor expression, leading to impaired follicular development. Ovarian follicles from the captan exposure group showed an increased level of inflammation, endoplasmic reticulum stress and apoptosis. In addition, captan exposure disrupted oocyte development. Transcriptomic analysis indicated that captan changed multiple genes expression in oocytes, including autophagy and apoptosis. Further molecular testing showed that captan induced oxidative stress and mitochondrial dysfunction, as indicated by the increased level of reactive oxygen species, disrupted mitochondrial structure and distribution, and depolarized membrane potential. Furthermore, captan triggered DNA damage, autophagy and early apoptosis, as shown by the enhanced levels of γ-H2AX, LC3, and Annexin-V and increased expression of related genes. Taken together, these results indicated that captan exposure impairs ovarian homeostasis and subsequently affects oocyte development.


Assuntos
Captana , Oócitos , Animais , Apoptose , Captana/metabolismo , Feminino , Homeostase , Camundongos , Mitocôndrias/metabolismo , Oócitos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
4.
Chem Biol Interact ; 360: 109934, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35429547

RESUMO

Acrylonitrile is an organic chemical synthetic monomer that is widely used in food packaging and manufacturing. Animal studies have reported that acrylonitrile is carcinogenic and toxic, but the effects on the female reproductive function in mammals are unknown. In the present study, we report that acrylonitrile treatment affects ovarian homeostasis in mice, resulting in impaired follicular development. Follicles in acrylonitrile-exposed mice exhibited high levels of inflammation and apoptosis, and acrylonitrile treatment interfered with oocyte development. Transcriptomics analysis showed that acrylonitrile altered the expression of oocyte genes related to apoptosis, oxidative stress, endoplasmic reticulum stress, and autophagy. Further molecular tests revealed that acrylonitrile induced early apoptosis, DNA damage, elevated levels of reactive oxygen species, endoplasmic reticulum abnormalities, and lysosomal aggregation. We also observed disruption of mitochondrial structure and distribution and depolarization of membrane potential. Finally, acrylonitrile treatment in female mice decreased the number and weight of offspring. Altogether, these findings suggest that acrylonitrile impairs the stability of the ovarian internal environment, which in turn affects oocyte development and reduces the number of offspring.


Assuntos
Acrilonitrila , Acrilonitrila/metabolismo , Acrilonitrila/toxicidade , Animais , Apoptose , Feminino , Inflamação/metabolismo , Mamíferos , Camundongos , Mitocôndrias/metabolismo , Oócitos
5.
J Agric Food Chem ; 69(6): 1942-1952, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33533595

RESUMO

Neonicotinoids are the most widely used insecticides in modern agriculture, and their residues have been found in the environment and food. Previous studies reported that neonicotinoids exert toxic effects in various tissues, but whether they interfered with the female reproductive process remains unknown. In our present research, thiamethoxam was selected as a representative neonicotinoid to establish a mouse toxicity model with gavage. We found that thiamethoxam decreased the ovarian coefficient and disrupted the expression of female hormone receptors, subsequently affecting follicle development. Ovarian granulosa cells from the thiamethoxam exposure group underwent a high level of apoptosis. Using transcriptome analysis, we showed that thiamethoxam exposure altered the expression of multiple oocyte genes related to inflammation, apoptosis, and endoplasmic reticulum stress. Thiamethoxam also adversely affected oocyte and embryo development. Western blotting and fluorescence staining results confirmed that thiamethoxam affected the integrity of DNA, triggered apoptosis, promoted oxidative stress and endoplasmic reticulum stress, and impaired mitochondrial function. Collectively, our results indicated that thiamethoxam exposure disrupts ovarian homeostasis and decreases oocyte quality via endoplasmic reticulum stress and apoptosis induction.


Assuntos
Estresse do Retículo Endoplasmático , Inseticidas , Animais , Feminino , Inseticidas/toxicidade , Camundongos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Oócitos , Tiametoxam
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA