Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 133(6): 060201, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39178451

RESUMO

Bell's theorem states that the quantum mechanical description of physical quantities cannot be fully explained by local realistic theories, laying a solid basis for various quantum information applications. Hardy's paradox is celebrated as the simplest form of Bell's theorem concerning its "All versus Nothing" approach to test local realism. However, due to experimental imperfections, existing tests of Hardy's paradox require additional assumptions of the experimental systems, and these assumptions constitute potential loopholes for faithfully testing local realistic theories. Here, we experimentally demonstrate Hardy's nonlocality through a photonic entanglement source. By achieving a detection efficiency of 82.2%, a quantum state fidelity of 99.10%, and applying high-speed quantum random number generators for the measurement setting switching, the experiment is implemented in a loophole-free manner. During 6 h of running, a strong violation of P_{Hardy}=4.646×10^{-4} up to 5 standard deviations is observed with 4.32×10^{9} trials. A null hypothesis test shows that the results can be explained by local realistic theories with an upper bound probability of 10^{-16348}. These testing results provide affirmative evidence against local realism, and establish an advancing benchmark for quantum information applications based on Hardy's paradox.

2.
Phys Rev Lett ; 126(5): 050503, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605771

RESUMO

Randomness expansion where one generates a longer sequence of random numbers from a short one is viable in quantum mechanics but not allowed classically. Device-independent quantum randomness expansion provides a randomness resource of the highest security level. Here, we report the first experimental realization of device-independent quantum randomness expansion secure against quantum side information established through quantum probability estimation. We generate 5.47×10^{8} quantum-proof random bits while consuming 4.39×10^{8} bits of entropy, expanding our store of randomness by 1.08×10^{8} bits at a latency of about 13.1 h, with a total soundness error 4.6×10^{-10}. Device-independent quantum randomness expansion not only enriches our understanding of randomness but also sets a solid base to bring quantum-certifiable random bits into realistic applications.

3.
Phys Rev Lett ; 122(12): 120504, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978079

RESUMO

Finding exponential separation between quantum and classical information tasks is like striking gold in quantum information research. Such an advantage is believed to hold for quantum computing but is proven for quantum communication complexity. Recently, a novel quantum resource called the quantum switch-which creates a coherent superposition of the causal order of events, known as quantum causality-has been harnessed theoretically in a new protocol providing provable exponential separation. We experimentally demonstrate such an advantage by realizing a superposition of communication directions for a two-party distributed computation. Our photonic demonstration employs d-dimensional quantum systems, qudits, up to d=2^{13} dimensions and demonstrates a communication complexity advantage, requiring less than (0.696±0.006) times the communication of any causally ordered protocol. These results elucidate the crucial role of the coherence of communication direction in achieving the exponential separation for the one-way processing task, and open a new path for experimentally exploring the fundamentals and applications of advanced features of indefinite causal structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA