Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(3): 534-537, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723524

RESUMO

Rare-earth (RE) ions doped laser glass has attracted the interest of many researchers because of its numerous potential applications in planar waveguides and fiber lasers. In this work, the 2-µm and upconversion luminescence properties of Ho3+ are simultaneously enhanced through the design of components used to regulate the network structure of the germanate glass. Furthermore, the thermal, structural, and spectroscopic properties of the Ho3+/Yb3+ co-doped germanate laser glass are systematically investigated. It is noted that the calculated gain coefficient of the Nb2O5 modified germanate laser glass can reach as high as 3.05 cm-1 at 2047 nm. These results suggest that the prepared germanate laser glass with superior performances is a promising candidate for 2-µm mid-infrared laser materials applications.

2.
Opt Lett ; 48(22): 5879-5882, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966742

RESUMO

In this work, the spectroscopic properties of 1.0 µm emission in Nd3+/Yb3+ co-doped phosphate glasses were systematically investigated under 808 nm excitation. Notably, broadband 1.0 µm emission with a full width at half maximum (FWHM) of 96 nm was obtained in the phosphate glass doped with 2 mol.% Nd2O3 and 1 mol.% Yb2O3. In addition, the energy transfer microscopic parameter and transfer efficiency were analyzed. What is more, multimaterial fibers with Nd3+/Yb3+ co-doped phosphate glass core and silicate cladding were successfully drawn by using the molten core method. An intense 1.0 µm amplified spontaneous emission (ASE) can be realized in a 3 cm long multimaterial fiber. More importantly, the FWHM of the ASE can reach as large as 60 nm when excited at 976 nm. These results demonstrate that the Nd3+/Yb3+ co-doped phosphate glasses and fibers are promising gain materials for amplifier and laser applications in photonics.

3.
Opt Lett ; 48(20): 5423-5426, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831883

RESUMO

Er3+-doped glass and fiber are very attractive for near-infrared (NIR) lasers and photonic applications. In this work, the full width at half maximum (FWHM) of NIR fluorescence emission of the Er3+-doped germanate glass can be broadened from 72 to 99 nm when Al2O3 was added. In addition, the spectroscopic properties, including absorption and emission spectra, Judd-Ofelt intensity parameters, absorption and emission cross sections, gain coefficient, and fluorescence lifetime, of the Al2O3-modified germanate glass were systematically investigated. What is more, silicate-clad heavily Er3+-doped germanate core multimaterial fibers were successfully drawn by a rod-in-tube method. Notably, broadband NIR amplified spontaneous emission (ASE) with an FWHM of 120 nm was achieved in this new fiber. To the best of our knowledge, this is the largest FWHM reported for Er3+-doped germanate glass fibers. These results suggest that the as-drawn Er3+-doped germanate glass fiber with superior performances is a promising candidate for broadband optical amplification.

4.
Phys Chem Chem Phys ; 25(22): 15452-15462, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249169

RESUMO

Broadband near-infrared (NIR) spectroscopy generated from a phosphor-converted light-emitting diode (pc-LED) has multifunctional applications, including food-quality analysis, bio-medical and night-vision, stimulating the demand for developing various NIR phosphors with desired properties. Herein, we selected a highly distorted garnet Ca4HfGe3O12 as the host and explored the near-infrared luminescence of Cr3+. As expected, this material achieved a long-wavelength NIR emission and excellent absorption efficiency based on the effect of Jahn-Teller distortion. The synthesized Ca4HfGe3O12:Cr3+ phosphor exhibits a broadband NIR emission peaking at 840 nm with a full width at half maximum of 150 nm, and the absorption efficiency reaches 48.0%. However, the internal quantum efficiency of the 6 mol% Cr3+-doped sample was measured to be only 35.3% and the integral emission intensity at 373 K kept only 60.1% of the initial intensity. The possible reasons for the unsatisfactory internal quantum efficiency and thermal stability were systematically analyzed, which provided a comprehensive understanding of the relationship between the crystal structure and the luminescent properties of Cr3+-activated garnet-type phosphors. Nevertheless, the as-prepared NIR pc-LED device exhibits a NIR output of 16.52 mW with a NIR photoelectric conversion efficiency of 5.92% driven by 100 mA current, indicating the potential of this material for application in NIR pc-LED.

5.
Appl Opt ; 62(32): 8587-8592, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38037974

RESUMO

Circular dichroism (CD) is highly required in the applications of biological detection and analytical chemistry. In this paper, we achieved a giant, broadband, and strength-switchable CD effect in a quadruple z-shaped G e 2 S b 2 T e 5 (GST) metasurface. At the amorphous state of GST (a-GST), the giant CD reaches 0.92 and the width of the absorption >0.80 is about 100 nm. The giant and broadband CD originates from polarization selective excitations of Mie resonances and the coupling between subunit resonators. With the transition from a-GST to crystalline GST, CD could be dynamically switched from 0.92 to 0.05. The GST-based metasurfaces with giant and wide-range switching CD will promote the development of active chiral devices.

6.
Opt Express ; 30(12): 20554-20563, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224797

RESUMO

A multifunctional metasurface capable of dynamic control for polarization selectivity and absorption is proposed by controlling the phase of Ge2Sb2Te5 (GST) in the near-infrared region. At amorphous state of GST (a-GST), the proposed GST strip array realized polarization selectivity in transmission-reflection integrated modes. The high-efficiency asymmetric transmission (AT = 0.92) and asymmetric reflection (AR = -0.82) are both obtained by selectively exciting Mie multipole resonances. With the transition from a-GST to crystalline (c-GST) state, the giant polarization selectivity almost disappeared, and the absorptions climb from < 0.1 to > 0.9. The maximum modulation depth reaches 94%. The mechanism of the dynamic switching between polarization selectivity and absorption is quantitively analyzed via multipole expansion. The GST based metasurfaces simultaneously possess excellent switchable capability for AT, AR, and absorption without refabricating structures, which is promising to the applications for next generation optical devices.

7.
Opt Express ; 30(16): 29022-29029, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299087

RESUMO

Circular dichroism (CD) is originally obtained from three-dimensional spiral structures by simultaneously exciting electric and magnetic resonances. To simplify construction, multilayer stacked asymmetric structures and the symmetric structures relying on oblique incidence are proposed for enhancing CD. Herein, we achieved the enhancement of dual-waveband CD by adding a Ge2Sb2Te5 (GST) layer on the top of a Z-shape gold array in a normally incident system. Benefited from the polarization selective excitations of electric and magnetic dipole resonances, the CD in a simple planar structure is immensely enhanced from near zero to 0.73 at 1.58 µm. Furthermore, the CD strengths is dynamically tuned by controlling the phase of GST. With the GST phase transition from amorphous (a-GST) to crystalline state (c-GST), CD magnitudes are switched by about 0.73 and 0.27 at dual wavebands respectively. The enhancement of CD by adding a layer on a simple planar array offers a new method for designing planar metasurfaces with strong chirality.

8.
Opt Lett ; 47(19): 5072-5075, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181189

RESUMO

Ultrathin titanium nitride (TiN) films have become a novel material flatform for constructing active metasurfaces in the near-infrared region. In this Letter, we numerically achieved the dual functions of switchable linear dichroism (LD) and tunable perfect absorption in a G-shape gold resonators/TiN film hybrid metasurface by gating ultrathin TiN films. As the carrier density of TiN decreases, the modulation depth for LD strength is about 70% at 1211 nm. Meanwhile, the response wavelength of perfect absorption (∼1) shifts to the blue by around 130 nm with a change of carrier density of 12%. Our proposed active metasurface with the capability of strength-switchable LD and wavelength-tunable perfect absorption has considerable potential in dynamic electro-optic modulation and flat photonic devices with reconfigurable functionalities.

9.
Opt Lett ; 47(7): 1907-1910, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363766

RESUMO

Circular dichroism (CD) is required in the applications of biological detection, analytical chemistry, etc. Here, we numerically demonstrated large-range switchable CD by controlling the phase change of Ge2Sb2Te5 (GST) in a zigzag array. At the amorphous state of GST (a-GST), the strong and dual-waveband CD effects are realized via the selective excitations of electric, magnetic, and toroidal resonances. With the transition from a-GST to crystalline state GST, CD strengths are tailored dynamically in large ranges. In detail, the CD magnitudes change by about 0.93 and the modulation depths exceed 94% at dual wavebands. The strong CD effects and large-range switch capability in the GST-based metasurfaces will boost the development of active chiroptical devices.


Assuntos
Eletricidade , Dicroísmo Circular
10.
Phys Chem Chem Phys ; 23(12): 7135-7144, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33876079

RESUMO

Femtosecond transient absorption spectroscopy has been employed to unravel separate initial nonequilibrium dynamic processes of photo-injected electrons and holes during the formation process of the lowest excitons at the K-valley in few-layer tungsten disulfide. Charge carrier thermalization and cooling, as well as concomitant many-body effects on the exciton resonances, are distinguished. The thermalization of holes is observed to be faster than that of electrons. Both of them proceed predominantly via carrier-carrier scattering, as evidenced by the observed dependence of the thermalization time on pump fluences. The fluence dependent time constants also suggest that the subsequent cooling for electrons is probably dominated by acoustic phonons, whereas for holes it is mostly controlled by LO phonons. An extremely fast red- and blue-shift crossover followed by a slow blue-shift of exciton resonance was observed in the temporal evolution of exciton resonances by resonant exciton A excitation. The rapid red-shift could be due to the strong screening of the Coulomb interaction between quasi-free charge carriers in electron-hole plasma. The subsequent slow blue-shift is the net result of the competition among many-body effects in the hot-exciton cooling process. Our findings elucidate the carrier-selective ultrafast dynamics and their many-body effects, underpinning new possibilities for developing optoelectronic devices based on transport properties of a single type of carrier.

11.
Opt Express ; 28(11): 16003-16011, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549432

RESUMO

Femtosecond pump-probe experiments with a ∼6.4 fs time-resolution were performed to investigate the coherent phonon dynamics in a c-plane sapphire crystal before and after intense 800 nm femtosecond laser irradiation. The intense femtosecond laser induced defect/distortion and even re-crystallization of crystalline structures, which result in the appearance of new peaks and relative intensity change in coherent phonon and Raman spectra. The combination of these two spectra was found to be beneficial to evidence the variation of crystalline structure and further to differentiate the origins of new Raman peaks after irradiation. Further analysis of time-dependent differential absorbance with damped cosine function fitting and Fourier transfer calculation yields the vibrational parameters, including periods, damping times and initial phases, before and after irradiation. With these parameters, the defect-effects on damping time and the mechanism of coherent phonon generation were addressed.

12.
Inorg Chem ; 59(18): 13427-13434, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32869990

RESUMO

The dual emission produced from Mn2+ when codoped with rare earth ions like Eu2+ or Ce3+ in inorganic compounds makes these materials attractive as efficient, color-tunable phosphors for warm-white solid-state lighting. Here, a series of efficient blue-green-emitting BaMgSi4O10:Eu2+,Mn2+ phosphors with thermally robust, tunable luminescence are reported. Steady-state and time-resolved photoluminescence spectroscopy reveal that Eu2+ and Mn2+ each occupy a single crystallographic site and confirm that energy transfer occurs from Eu2+ to Mn2+. The internal and external quantum efficiency of BaMgSi4O10:Eu2+,Mn2+ can reach as high as 69.0 and 47.5%, respectively, upon 360 nm excitation. Moreover, this phosphor possesses nearly zero-thermal quenching up to 440 K due to thermally induced electron detrapping. A fabricated UV-excited white LED device incorporating the blue-green-emitting BaMgSi4O10:Eu2+,Mn2+ and the red-emitting Sr2Si5N8:Eu2+ phosphors exhibits an excellent CRI of 94.3 with a correlated color temperature of 3967 K. These results prove the potential applications of Eu2+,Mn2+ codoped BaMgSi4O10 phosphor for generating warm-white light.

13.
Phys Chem Chem Phys ; 22(4): 2327-2336, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932820

RESUMO

Complex alkaline earth silicates have been extensively studied as rare-earth substituted phosphor hosts for use in solid-state lighting. One of the biggest challenges facing the development of new phosphors is understanding the relationship between the observed optical properties and the crystal structure. Fortunately, recent improvements in characterization techniques combined with advances in computational methodologies provide the research tools necessary to conduct a comprehensive analysis of these systems. In this work, a new Ce3+ substituted phosphor is developed using Ba5Si8O21 as the host crystal structure. The compound is evaluated using a combination of experimental and computational methods and shows Ba5Si8O21:Ce3+ adopts a monoclinic crystal structure that was confirmed through Rietveld refinement of high-resolution synchrotron powder X-ray diffraction data. Photoluminescence spectroscopy reveals a broad-band blue emission centered at ∼440 nm with an absolute quantum yield of ∼45% under ultraviolet light excitation (λex = 340 nm). This phosphor also shows a minimal chromaticity-drift but with moderate thermal quenching of the emission peak at elevated temperatures. The modest optical response of this phase is believed to stem from a combination of intrinsic structural complexity and the formation of defects because of the aliovalent rare-earth substitution. Finally, computational modeling provides essential insight into the site preference and energy level distribution of Ce3+ in this compound. These results highlight the importance of using experiment and computation in tandem to interpret the relationship between observed optical properties and the crystal structures of all rare-earth substituted complex phosphors.

14.
Phys Chem Chem Phys ; 22(39): 22728-22735, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33016284

RESUMO

Acoustic vibrations of Au and Ag elongated nano-objects with original morphologies, from Ag-Ag homodimers to Au@Ag-Ag heterodimers and Au@Ag eccentric core-shell spheroids, have been experimentally investigated by ultrafast time-resolved optical spectroscopy. Their frequencies, obtained by the analysis of time-dependent transient absorption changes, are compared with the results obtained from finite element modeling (FEM) numerical computations, which allow assignment of the detected oscillating signals to fundamental radial and extensional modes. FEM was further used to analyze the effects of morphology and composition on the vibrational dynamics. FEM computations indicate that (1) the central distance between particles forming the nanodimers has profound effects on the extensional mode frequencies and a negligible influence on the radial mode ones, in analogy with the case of monometallic nanorods, (2) coating Au with Ag also has a strong mass-loading-like effect on the dimer and core-shell stretching mode frequency, while (3) its influence on the radial breathing mode is smaller and analogous to the non-monotonic frequency dependence on the Au fraction previously observed in isotropic bimetallic spheres. These findings are significant for developing a predictive understanding of nanostructure mechanical properties and for designing new mechanical nanoresonators.

15.
Luminescence ; 32(3): 285-291, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27345302

RESUMO

A series of Ce3+ -activated blue-emitting phosphors BaY2 Si3 O10 (BYSO) was designed and synthesized by a conventional solid-state method. Upon ultraviolet light (250-370 nm) excitation, the obtained phosphors showed an intense blue emission band centered at 400-427 nm depending on doping concentration, and corresponding to the 5d→4f transition of Ce3+ . The effects of doping concentration on crystal structure, emitting color, photoluminescence and photoluminescence excitation spectra, as well as the concentration quenching mechanism were studied in detail. The optimal doping concentration of Ce3+ in this phosphor was demonstrated to be about 0.75% and the concentration quenching mechanism can be ascribed to electric dipole-dipole interactions with a critical distance of ~38 Å. These fine luminescence properties indicate that BYSO:Ce3+ may be a potential blue phosphor for full-color ultra-violet (UV) white light emitting diodes (WLEDs).


Assuntos
Bário/química , Cério/química , Substâncias Luminescentes/química , Oxigênio/química , Silício/química , Ítrio/química , Cor , Fenômenos Ópticos , Raios Ultravioleta
16.
Dalton Trans ; 53(12): 5553-5561, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38426302

RESUMO

Near-infrared phosphor-converted light-emitting diodes (NIR pc-LEDs) are considered as next-generation of NIR light sources for spectroscopy. However, it is still a challenge to develop an inexpensive broadband NIR phosphor with relatively long-wavelength (λem > 800 nm) emission. In this work, an octahedral Al3+-containing pyrophosphate Al0.5Ta0.5P2O7 with a cubic structure was chosen as a host for Cr3+. Synthesizing this material indicates that this phosphor exhibits a broadband NIR emission peaking at 850 nm with a full width at half maximum (FWHM) of 155 nm under 465 nm excitation. The crystal structure, morphology, local structure, and photoluminescence properties of this material were investigated in detail. The results revealed a full understanding of this new material. A NIR pc-LED device fabricated by using this material combined with a 450 nm LED chip generates a NIR output power of 10.7 mW and a NIR photoelectric conversion efficiency of 3.4% under a 100 mA driving current, which shows the possibility of this material to be utilized in NIR pc-LED applications. Moreover, this material exhibits a linear relationship between emission intensity, decay time and temperature in a wide temperature range, implying that excellent multi-model temperature sensing applications can be expected.

17.
Int J Biol Macromol ; : 133097, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38942670

RESUMO

Pesticide contamination is a global concern, threatening human health and food safety. Herein, we developed heparin (HEP) functionalized upconversion nanoparticles (UCNPs)-based ratiometric nanosensor for the sensitive detection of 2,6-dichloro-4-nitroaniline (DCN) pesticide via inner filter effect. The strategy for HEP functionalization of UCNPs is based on adjusting the surface potentials of UCNPs with polyanionic HEP through the electrostatic interaction. UCNPs (NaYbF4:Gd/Y/Tm@NaYbF4@NaYF4) was designed with core-shell-shell structure and extra sensitizer layer for efficient and strong upconversion luminescence (UCL) in the range of UV to NIR. After incorporation of DCN, the upconverted UV emission of UCNPs-HEP ratiometric nanosensor was considerably quenched with the NIR UCL at 800 nm remaining unchanged as internal standard. The UCNPs-HEP ratiometric nanosensor can achieve outstandingly selective and sensitive detection of DCN at the wide linear range of 5-300 µM with a detection limit of 0.41 µM. The remarkable applicability of the UCNPs-HEP ratiometric nanosensor was verified in apple, cucumber and grapes samples. The developed UCNPs-HEP ratiometric nanosensor with excellent biocompatibility and water dispersion capability, is promising for convenient, selective and sensitive sensing of DCN towards food and aqueous samples.

18.
Dalton Trans ; 52(9): 2853-2862, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36762537

RESUMO

A broadband near-infrared (NIR) light source based on a phosphor-converted light-emitting diode (pc-LED) has attracted increasing interest to be used in non-destructive examination, security-monitoring and medical diagnosis fields, which stimulates the exploration of NIR phosphors with high performance. Herein, a series of Cr3+-activated garnet Ln3ScInGa3O12:Cr3+ (Ln = La, Gd, Y, and Lu) phosphors were reported, allowing an emission peak ranging from 726 to 822 nm. Among them, Y3ScInGa3O12:Cr3+ with an optimized Cr3+-doping concentration of 6 mol% exhibits a high internal quantum efficiency (IQE = 83.1%) and excellent absorption efficiency (AE = 44.2%) under 450 nm blue light excitation, enabling an external quantum efficiency as high as 36.7%. Moreover, this material can maintain 93.0% of the initial intensity when heated up to 423 K, implying outstanding thermal stability. Finally, a prototype NIR pc-LED device was fabricated by coating the optimized phosphor on a 455 nm LED chip, which generates a broadband NIR emission with a peak located at 765 nm and a full width at half maximum of 127 nm. The NIR output power and NIR photoelectric conversion efficiency of this device were found to be 38.01 mW and 11.0%, respectively, under 100 mA driving current, demonstrating the feasibility of this material to be applied in NIR pc-LEDs.

19.
Polymers (Basel) ; 15(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37514448

RESUMO

Borophene, an emerging two-dimensional (2D) material platform, is capable of supporting highly confined plasmonic modes in the visible and near-infrared wavebands. This provides a novel building block for light manipulation at the deep subwavelength scale, thus making it well-suited for designing ultracompact optical devices. Here, we theoretically explore a borophene-based plasmonic hybrid system comprising a continuous borophene monolayer (CBM) and sodium nanostrip gratings (SNGs), separated by a polymer spacer layer. In such a structure, a dynamically tunable plasmon-induced transparency (PIT) effect can be achieved by strongly coupling dark and bright plasmonic modes, while actively controlling borophene. Here, the bright mode is generated through the localized plasmon resonance of SNGs when directly excited by TM-polarized incident light. Meanwhile, the dark mode corresponds to a propagating borophene surface plasmon (BSP) mode in the CBM waveguide, which cannot be directly excited, but requires phase matching with the assistance of SNGs. The thickness of the polymer layer has a significant impact on the coupling strength of the two modes. Owing to the BSP mode, highly sensitive to variations in the ambient refractive index (RI), this borophene-based hybrid system exhibits a good RI-sensing performance (643.8 nm/RIU) associated with a wide range of dynamically adjustable wavebands (1420-2150 nm) by tuning the electron density of borophene. This work offers a novel concept for designing active plasmonic sensors dependent on electrically gating borophene, which has promising applications in next-generation point-of-care (PoC) biomedical diagnostic techniques.

20.
ACS Appl Mater Interfaces ; 14(45): 51157-51164, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36336917

RESUMO

Broadband near-infrared (NIR) phosphors are in high demand for creating "smart" NIR phosphor-converted light-emitting diode (pc-LED) sources. In this work, a series of Cr3+-substituted NIR-emitting materials with highly efficient, broad, tunable emission spectra are achieved by modifying the simple oxide Ga2O3 using [Mg2+-Ge4+] and [Ga3+-Ga3+] co-unit substitution. The results show that the emission peak can be shifted from 726 to 830 nm while maintaining a constant excitation peak in the blue light region, enabling extensive application. The optical properties stem from changes in the Cr3+ crystal field environment upon substitution. Intriguingly, the temperature-dependent photoluminescence emission peak position shows virtually no change in the [Mg2+-Ge4+] co-substituted materials. This abnormal phenomenon is found to be a comprehensive embodiment of a weakening crystal field environment (red-shift) as the temperature increases and reduced local structure distortion (blue-shift) with increasing temperature. The high quantum yield, NIR emission, and net-zero emission shift as a function of temperature make this phosphor class optimal for device incorporation. As a result, their performance was studied by coating the phosphor on a 450 nm emitting LED chip. The fabricated device demonstrates an excellent NIR output power and NIR photoelectric conversion efficiency. This study provides a series of efficient, tunable, broadband NIR materials for spectroscopy applications and contributes to the basic foundation of Cr3+-activated NIR phosphors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA