RESUMO
Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.
Assuntos
Bacteriocinas , Klebsiella pneumoniae , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Bacteriocinas/toxicidade , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Porinas/genética , Porinas/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacosRESUMO
Although it is widely accepted that herpesviruses utilize host RNA polymerase II (RNAPII) to transcribe viral genes, the mechanism of utilization varies significantly among herpesviruses. With the exception of herpes simplex virus 1 (HSV-1) in alpha-herpesviruses, the mechanism by which RNAPII transcribes viral genes in the remaining alpha-herpesviruses has not been reported. In this study, we investigated the transcriptional mechanism of an avian alpha-herpesvirus, Anatid herpesvirus 1 (AnHV-1). We discovered for the first time that hexamethylene-bis-acetamide-inducing protein 1 (HEXIM1), a major inhibitor of positive elongation factor B (P-TEFb), was significantly upregulated during AnHV-1 infection, and its expression was dynamically regulated throughout the progression of the disease. However, the expression level of HEXIM1 remained stable before and after HSV-1 infection. Excessive HEXIM1 assists AnHV-1 in progeny virus production, gene expression, and RNA polymerase II recruitment by promoting the formation of more inactive P-TEFb and the loss of RNAPII S2 phosphorylation. Conversely, the expression of some host survival-related genes, such as SOX8, CDK1, MYC, and ID2, was suppressed by HEXIM1 overexpression. Further investigation revealed that the C-terminus of the AnHV-1 US1 gene is responsible for the upregulation of HEXIM1 by activating its promoter but not by interacting with P-TEFb, which is the mechanism adopted by its homologs, HSV-1 ICP22. Additionally, the virus proliferation deficiency caused by US1 deletion during the early infection stage could be partially rescued by HEXIM1 overexpression, suggesting that HEXIM1 is responsible for AnHV-1 gaining transcription advantages when competing with cells. Taken together, this study revealed a novel HEXIM1-dependent AnHV-1 transcription mechanism, which has not been previously reported in herpesvirus or even DNA virus studies.IMPORTANCEHexamethylene-bis-acetamide-inducing protein 1 (HEXIM1) has been identified as an inhibitor of positive transcriptional elongation factor b associated with cancer, AIDS, myocardial hypertrophy, and inflammation. Surprisingly, no previous reports have explored the role of HEXIM1 in herpesvirus transcription. This study reveals a mechanism distinct from the currently known herpesvirus utilization of RNA polymerase II, highlighting the dependence on high HEXIM1 expression, which may be a previously unrecognized facet of the host shutoff manifested by many DNA viruses. Moreover, this discovery expands the significance of HEXIM1 in pathogen infection. It raises intriguing questions about whether other herpesviruses employ similar mechanisms to manipulate HEXIM1 and if this molecular target can be exploited to limit productive replication. Thus, this discovery not only contributes to our understanding of herpesvirus infection regulation but also holds implications for broader research on other herpesviruses, even DNA viruses.
Assuntos
Anseriformes , Fator B de Elongação Transcricional Positiva , Proteínas de Ligação a RNA , Fatores de Transcrição , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transcrição Viral , AnimaisRESUMO
BACKGROUND: The disease caused by Riemerella anatipestifer (R. anatipestifer, RA) results in large economic losses to the global duck industry every year. Serovar-related genomic variation, such as the O-antigen and capsular polysaccharide (CPS) gene clusters, has been widely used for serotyping in many gram-negative bacteria. RA has been classified into at least 21 serovars based on slide agglutination, but the molecular basis of serotyping is unknown. In this study, we performed a pan-genome-wide association study (Pan-GWAS) to identify the genetic loci associated with RA serovars. RESULTS: The results revealed a significant association between the putative CPS synthesis gene locus and the serological phenotype. Further characterization of the CPS gene clusters in 11 representative serovar strains indicated that they were highly diverse and serovar-specific. The CPS gene cluster contained the key genes wzx and wzy, which are involved in the Wzx/Wzy-dependent pathway of CPS synthesis. Similar CPS loci have been found in some other species within the family Weeksellaceae. We have also shown that deletion of the wzy gene in RA results in capsular defects and cross-agglutination. CONCLUSIONS: This study indicates that the CPS synthesis gene cluster of R. anatipestifer is a serotype-specific genetic locus. Importantly, our finding provides a new perspective for the systematic analysis of the genetic basis of the R anatipestifer serovars and a potential target for establishing a complete molecular serotyping scheme.
Assuntos
Doenças das Aves Domésticas , Riemerella , Animais , Sorogrupo , Estudo de Associação Genômica Ampla , Riemerella/genética , Patos/genética , Patos/microbiologia , Doenças das Aves Domésticas/microbiologiaRESUMO
Since sodium-ion batteries (SIBs) have become increasingly commercialized in recent years, Na3V2(PO4)2O2F (NVPOF) offers promising economic potential as a cathode for SIBs because of its high operating voltage and energy density. According to reports, NVPOF performs poorly in normal commercial poly(vinylidene fluoride) (PVDF) binder systems and performs best in combination with aqueous binder. Although in line with the concept of green and sustainable development for future electrode preparation, aqueous binders are challenging to achieve high active material loadings at the electrode level, and their relatively high surface tension tends to cause the active material on the electrode sheet to crack or even peel off from the collector. Herein, a cross-linkable and easily commercial hybrid binder constructed by intermolecular hydrogen bonding (named HPP) has been developed and utilized in an NVPOF system, which enables the generation of a stable cathode electrolyte interphase on the surface of active materials. According to theoretical simulations, the HPP binder enhances electronic/ionic conductivity, which greatly lowers the energy barrier for Na+ migration. Additionally, the strong hydrogen-bond interactions between the HPP binder and NVPOF effectively prevent electrolyte corrosion and transition-metal dissolution, lessen the lattice volume effect, and ensure structural stability during cycling. The HPP-based NVPOF offers considerably improved rate capability and cycling performance, benefiting from these benefits. This comprehensive binder can be extended to the development of next-generation energy storage technologies with superior performance.
RESUMO
All-weather operation is considered an ultimate pursuit of the practical development of sodium-ion batteries (SIBs), however, blocked by a lack of suitable electrolytes at present. Herein, by introducing synergistic manipulation mechanisms driven by phosphorus/silicon involvement, the compact electrode/electrolyte interphases are endowed with improved interfacial Na-ion transport kinetics and desirable structural/thermal stability. Therefore, the modified carbonate-based electrolyte successfully enables all-weather adaptability for long-term operation over a wide temperature range. As a verification, the half-cells using the designed electrolyte operate stably over a temperature range of -25 to 75 °C, accompanied by a capacity retention rate exceeding 70% even after 1700 cycles at 60 °C. More importantly, the full cells assembled with Na3V2(PO4)2O2F cathode and hard carbon anode also have excellent cycling stability, exceeding 500 and 1000 cycles at -25 to 50 °C and superb temperature adaptability during all-weather dynamic testing with continuous temperature change. In short, this work proposes an advanced interfacial regulation strategy targeted at the all-climate SIB operation, which is of good practicability and reference significance.
RESUMO
Currently, the desired research focus in energy storage technique innovation has been gradually shifted to next-generation aqueous batteries holding both high performance and sustainability. However, aqueous Zn-I2 batteries have been deemed to have great sustainable potential, owing to the merits of cost-effective and eco-friendly nature. However, their commercial application is hindered by the serious shuttle effect of polyiodides during reversible operations. In this work, a Janus functional binder based on chitosan (CTS) molecules was designed and prepared; the polar terminational groups impart excellent mechanical robustness to hybrid binders; meanwhile, it can also deliver isochronous enhancement on physical adsorption and redox kinetics toward I2 species. By feat of highly effective remission to shuttle effect, the CTS cell exhibits superb electrochemical storage capacities with long-term robustness, specifically, 144.1 mAh g-1, at a current density of 0.2 mA g-1 after 1500 cycles. Simultaneously, the undesired self-discharging issue could be also well-addressed; the Coulombic efficiency could remain at 98.8 % after resting for 24 h. More importantly, CTS molecules endow good biodegradability and reusable properties; after iodine species were reloaded, the recycled devices could also deliver specific capacities of 73.3 mAh g-1, over 1000 cycles. This Janus binder provides a potential synchronous solution to realize high comprehensive performance with high iodine utilization and further make it possible for sustainable Zn-I2 batteries.
RESUMO
BACKGROUND: Riemerella anatipestifer encodes an iron acquisition system, but whether it encodes the iron efflux pump and its role in antibiotic resistance are largely unknown. OBJECTIVES: To screen and identify an iron efflux gene in R. anatipestifer and determine whether and how the iron efflux gene is involved in antibiotic resistance. METHODS: In this study, gene knockout, streptonigrin susceptibility assay and inductively coupled plasma mass spectrometry were used to screen for the iron efflux gene ietA. The MIC measurements, scanning electron microscopy and reactive oxygen species (ROS) detection were used to verify the role of IetA in aztreonam resistance and its mechanism. Mortality and colonization assay were used to investigate the role of IetA in virulence. RESULTS: The deletion mutant ΔietA showed heightened susceptibility to streptonigrin, and prominent intracellular iron accumulation was observed in ΔfurΔietA under excess iron conditions. Additionally, ΔietA exhibited increased sensitivity to H2O2-produced oxidative stress. Under aerobic conditions with abundant iron, ΔietA displayed increased susceptibility to the ß-lactam antibiotic aztreonam due to heightened ROS production. However, the killing efficacy of aztreonam was diminished in both WT and ΔietA under anaerobic or iron restriction conditions. Further experiments demonstrated that the efficiency of aztreonam against ΔietA was dependent on respiratory complexes â and â ¡. Finally, in a duckling model, ΔietA had reduced virulence compared with the WT. CONCLUSION: Iron efflux is critical to alleviate oxidative stress damage and ß-lactam aztreonam killing in R. anatipestifer, which is linked by cellular respiration.
Assuntos
Antibacterianos , Aztreonam , Ferro , Testes de Sensibilidade Microbiana , Estresse Oxidativo , Riemerella , Estresse Oxidativo/efeitos dos fármacos , Ferro/metabolismo , Animais , Antibacterianos/farmacologia , Riemerella/efeitos dos fármacos , Riemerella/genética , Riemerella/patogenicidade , Riemerella/metabolismo , Aztreonam/farmacologia , Infecções por Flavobacteriaceae/microbiologia , Virulência , Resistência beta-Lactâmica , Patos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Estreptonigrina/farmacologia , Técnicas de Inativação de Genes , Doenças das Aves Domésticas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
IMPORTANCE: Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that replicates well in mosquito, bird, and mammalian cells. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in the serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and poses a threat to mammalian health. Thus, understanding the pathogenic mechanism of DTMUV is crucial for identifying potential antiviral targets. In this study, we discovered that NS3 can induce the mitochondria-mediated apoptotic pathway through the PERK/PKR pathway; it can also interact with voltage-dependent anion channel 2 to induce apoptosis. Our findings provide a theoretical basis for understanding the pathogenic mechanism of DTMUV infection and identifying potential antiviral targets and may also serve as a reference for exploring the pathogenesis of other flaviviruses.
Assuntos
Apoptose , Patos , Infecções por Flavivirus , Flavivirus , Especificidade de Hospedeiro , Animais , Humanos , Antivirais/farmacologia , Patos/virologia , eIF-2 Quinase/metabolismo , Flavivirus/enzimologia , Flavivirus/patogenicidade , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Mitocôndrias/metabolismo , Terapia de Alvo Molecular/tendências , Zoonoses Virais/diagnóstico , Zoonoses Virais/imunologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Canal de Ânion 2 Dependente de Voltagem/metabolismoRESUMO
Duck plague virus (DPV) is a high-morbidity fowl alphaherpesvirus that causes septicemic lesions in various organs. Most DPV genes are conserved among herpesviruses, while a few are specific to fowl herpesviruses, including the LORF3 gene, for which there is currently no literature describing its biological properties and functions. This study first addressed whether the LORF3 protein is expressed by making specific polyclonal antibodies. We could demonstrate that DPV LORF3 is an early gene and encodes a protein involved in virion assembly, mainly localized in the nucleus of DPV-infected DEF cells. To investigate the role of this novel LORF3 protein in DPV pathogenesis, we generated a recombinant virus that lacks expression of the LORF3 protein. Our data revealed that the LORF3 protein is not essential for viral replication but contributes to DPV replication in vitro and in vivo and promotes duck plague disease morbidity and mortality. Interestingly, deletion of the LORF3 protein abolished thymus atrophy in DPV-vaccinated ducks. In conclusion, this study revealed the expression of avian herpesviruses-specific genes and unraveled the role of the early protein LORF3 in the pathogenesis of DPV. IMPORTANCE DPV is a highly lethal alphaherpesvirus that causes duck plague in birds of the order Anseriformes. The virus has caused huge economic losses to the poultry industry due to high morbidity and mortality and the cost of vaccination. DPV encodes 78 open reading frames (ORFs), and these genes are involved in various processes of the viral life cycle. Functional characterization of DPV genes is important for understanding the complex viral life cycle and DPV pathogenesis. Here, we identified a novel protein encoded by LORF3, and our data suggest that the LORF3 protein is involved in the occurrence and development of duck plague.
Assuntos
Alphaherpesvirinae , Infecções por Herpesviridae , Animais , Alphaherpesvirinae/genética , Alphaherpesvirinae/metabolismo , Alphaherpesvirinae/patogenicidade , Patos , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Células CultivadasRESUMO
Many RING domain E3 ubiquitin ligases play critical roles in fine-tuning the innate immune response, yet little is known about their regulatory role in flavivirus-induced innate immunity. In previous studies, we found that the suppressor of cytokine signaling 1 (SOCS1) protein mainly undergoes lysine 48 (K48)-linked ubiquitination. However, the E3 ubiquitin ligase that promotes the K48-linked ubiquitination of SOCS1 is unknown. In the present study, we found that RING finger protein 123 (RNF123) binds to the SH2 domain of SOCS1 through its RING domain and facilitates the K48-linked ubiquitination of the K114 and K137 residues of SOCS1. Further studies found that RNF123 promoted the proteasomal degradation of SOCS1 and promoted Toll-like receptor 3 (TLR3)- and interferon (IFN) regulatory factor 7 (IRF7)-mediated type I IFN production during duck Tembusu virus (DTMUV) infection through SOCS1, ultimately inhibiting DTMUV replication. Overall, these findings demonstrate a novel mechanism by which RNF123 regulates type I IFN signaling during DTMUV infection by targeting SOCS1 degradation. IMPORTANCE In recent years, posttranslational modification (PTM) has gradually become a research hot spot in the field of innate immunity regulation, and ubiquitination is one of the critical PTMs. DTMUV has seriously endangered the development of the waterfowl industry in Southeast Asian countries since its outbreak in 2009. Previous studies have shown that SOCS1 is modified by K48-linked ubiquitination during DTMUV infection, but E3 ubiquitin ligase catalyzing the ubiquitination of SOCS1 has not been reported. Here, we identify for the first time that RNF123 acts as an E3 ubiquitin ligase that regulates TLR3- and IRF7-induced type I IFN signaling during DTMUV infection by targeting the K48-linked ubiquitination of the K114 and K137 residues of SOCS1 and the proteasomal degradation of SOCS1.
Assuntos
Infecções por Flavivirus , Flavivirus , Interferon Tipo I , Proteína 1 Supressora da Sinalização de Citocina , Animais , Patos , Flavivirus/fisiologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Receptor 3 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação , Proteína 1 Supressora da Sinalização de Citocina/imunologia , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Ligação Proteica , Domínios Proteicos/imunologia , Replicação Viral , Células HEK293 , Embrião de Mamíferos , HumanosRESUMO
Manganese (Mn) is an essential element for bacteria, but the overload of manganese is toxic. In a previous study, we showed that the cation diffusion facilitator protein MetA and the resistance-nodulation-division efflux pump MetB are responsible for Mn efflux in the bacterial pathogen Riemerella anatipestifer CH-1. However, whether this bacterium encodes additional manganese efflux proteins is unclear. In this study, we show that R. anatipestifer CH-1 encodes a tellurium resistance C (TerC) family protein with low similarity to other characterized TerC family proteins. Compared to the wild type (WT), the terC mutant of R. anatipestifer CH-1 (∆terC) is sensitive to Mn(II) intoxication. The ability of TerC to export manganese is higher than that of MetB but lower than that of MetA. Consistently, terC deletion (∆terC) led to intracellular accumulation of Mn2+ under excess manganese conditions. Further study showed that ∆terC was more sensitive than the WT to the oxidant hypoclorite but not to hydrogen peroxide. Mutagenesis studies showed that the mutant at amino acid sites of Glu116 (E116), Asp122 (D122), Glu245 (E245) Asp248 (D248), and Asp254 (D254) may be involved in the ability of TerC to export manganese. The transcription of terC was upregulated under excess manganese and downregulated under iron-limited conditions. However, this was not dependent on the manganese metabolism regulator MetR. In contrast to a strain lacking the manganese efflux pump MetA or MetB, the terC mutant is attenuated in virulence in a duckling model of infection due to increased sensitivity to duck serum. Finally, comparative analysis showed that homologs of TerC are distributed across the bacterial kingdom, suggesting that TerC exerts a conserved manganese efflux function.IMPORTANCERiemerella anatipestifer is a notorious bacterial pathogen of ducks and other birds. In R. anatipestifer, the genes involved in manganese efflux have not been completely identified, although MetA and MetB have been identified as two manganese exporters. Additionally, the function of TerC family proteins in manganese efflux is controversial. Here, we demonstrated that a TerC family protein helps prevent Mn(II) intoxication in R. anatipestifer and that the ability of TerC to export manganese is intermediate compared to that of MetA and MetB. Sequence analysis and mutagenesis studies showed that the conserved key amino sites of TerC are Glu116, Asp122, Glu245, Asp248, and Asp254. The transcription of terC was regulated by manganese excess and iron limitation. Finally, we show that TerC plays a role in the virulence of R. anatipestifer due to the increased sensitivity to duck serum, rather than the increased sensitivity to manganese. Taken together, these results expand our understanding of manganese efflux and the pathogenic mechanisms of R. anatipestifer.
Assuntos
Infecções por Flavobacteriaceae , Doenças das Aves Domésticas , Riemerella , Animais , Virulência/genética , Proteínas de Bactérias/genética , Manganês/metabolismo , Telúrio/metabolismo , Riemerella/genética , Patos/microbiologia , Ferro/metabolismo , Doenças das Aves Domésticas/microbiologia , Infecções por Flavobacteriaceae/microbiologiaRESUMO
The ongoing epidemic of flaviviruses worldwide has underscored the importance of studying flavivirus vector competence, considering their close association with mosquito vectors. Tembusu virus is an avian-related mosquito-borne flavivirus that has been an epidemic in China and Southeast Asia since 2010. However, the reason for the outbreak of Tembusu virus in 2010 remains unclear, and it is unknown whether changes in vector transmission played an essential role in this process. To address these questions, we conducted a study using Culex quinquefasciatus as a model for Tembusu virus infection, employing both oral infection and microinjection methods. Our findings confirmed that both vertical and venereal transmission collectively contribute to the cycle of Tembusu virus within the mosquito population, with persistent infections observed. Importantly, our data revealed that the prototypical Tembusu virus MM_1775 strain exhibited significantly greater infectivity and transmission rates in mosquitoes than did the duck Tembusu virus (CQW1 strain). Furthermore, we revealed that the viral E protein and 3' untranslated region are key elements responsible for these differences. In conclusion, our study sheds light on mosquito transmission of Tembusu virus and provides valuable insights into the factors influencing its infectivity and transmission rates. These findings contribute to a better understanding of Tembusu virus epidemiology and can potentially aid in the development of strategies to control its spread.
Assuntos
Culex , Infecções por Flavivirus , Flavivirus , Mosquitos Vetores , Animais , Culex/virologia , Flavivirus/fisiologia , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Mosquitos Vetores/virologia , FemininoRESUMO
Migratory birds are important vectors for virus transmission, how migratory birds recognize viruses and viruses are sustained in birds is still enigmatic. As an animal model for waterfowl among migratory birds, studying and dissecting the antiviral immunity and viral evasion in duck cells may pave a path to deciphering these puzzles. Here, we studied the mechanism of antiviral autophagy mediated by duck STING in DEF cells. The results collaborated that duck STING could significantly enhance LC3B-II/I turnover, LC3B-EGFP puncta formation, and mCherry/EGFP ratio, indicating that duck STING could induce autophagy. The autophagy induced by duck STING is not affected by shRNA knockdown of ATG5 expression, deletion of the C-terminal tail of STING, or TBK1 inhibitor BX795 treatment, indicating that duck STING activated non-classical selective autophagy is independent of interaction with TBK1, TBK1 phosphorylation, and interferon (IFN) signaling. The STING R235A mutant and Sar1A/B kinase mutant abolished duck STING induced autophagy, suggesting binding with cGAMP and COPII complex mediated transport are the critical prerequisite. Duck STING interacted with LC3B through LIR motifs to induce autophagy, the LIR 4/7 motif mutants of duck STING abolished the interaction with LC3B, and neither activated autophagy nor IFN expression, indicating that duck STING associates with LC3B directed autophagy and dictated innate immunity activation. Finally, we found that duck STING mediated autophagy significantly inhibited duck plague virus (DPV) infection via ubiquitously degraded viral proteins. Our study may shed light on one scenario about the control and evasion of diseases transmitted by migratory birds.
Assuntos
Autofagia , Patos , Transdução de Sinais , Animais , Mardivirus/fisiologia , Interferons/metabolismo , Alphaherpesvirinae/fisiologia , Imunidade Inata , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/virologiaRESUMO
The maintenance of viral protein homeostasis depends on the interaction between host cell proteins and viral proteins. As a molecular chaperone, heat shock protein 70 (HSP70) has been shown to play an important role in viral infection. Our results showed that HSP70 can affect translation, replication, assembly, and release during the life cycle of duck hepatitis A virus type 1 (DHAV-1). We demonstrated that HSP70 can regulate viral translation by interacting with the DHAV-1 internal ribosome entry site (IRES). In addition, HSP70 interacts with the viral capsid proteins VP1 and VP3 and promotes their stability by inhibiting proteasomal degradation, thereby facilitating the assembly of DHAV-1 virions. This study demonstrates the specific role of HSP70 in regulating DHAV-1 replication, which are helpful for understanding the pathogenesis of DHAV-1 infection and provide additional information about the role of HSP70 in infection by different kinds of picornaviruses, as well as the interaction between picornaviruses and host cells.
Assuntos
Proteínas de Choque Térmico HSP70 , Vírus da Hepatite do Pato , Sítios Internos de Entrada Ribossomal , Replicação Viral , Vírus da Hepatite do Pato/fisiologia , Vírus da Hepatite do Pato/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Animais , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/genética , Patos , Doenças das Aves Domésticas/virologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Infecções por Picornaviridae/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Hepatite Viral Animal/virologia , Hepatite Viral Animal/metabolismo , Biossíntese de ProteínasRESUMO
Duck hepatitis A virus type 1 (DHAV-1) is an important member of the Picornaviridae family that causes highly fatal hepatitis in ducklings. Since picornaviruses have small genomes with limited coding capacity, they must utilize host proteins for viral cap-independent translation and RNA replication. Here, we report the role of duck poly(rC)-binding protein 2 (PCBP2) in regulating the replication and translation of DHAV-1. During DHAV-1 infection, PCBP2 expression was upregulated. A biotinylated RNA pull-down assay revealed that PCBP2 positively regulates DHAV-1 translation through specific interactions with structural domains II and III of the DHAV-1 internal ribosome entry site (IRES). Further studies revealed that PCBP2 promotes DHAV-1 replication via an interaction of its KH1 domain (aa 1-92) with DHAV-1 3Dpol. Thus, our studies demonstrated the specific role of PCBP2 in regulating DHAV-1 translation and replication, revealing a novel mechanism by which hostâvirus interactions regulate viral translation and replication. These findings contribute to further understanding of the pathogenesis of picornavirus infections.
Assuntos
Patos , Vírus da Hepatite do Pato , Infecções por Picornaviridae , Doenças das Aves Domésticas , Proteínas de Ligação a RNA , Replicação Viral , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Vírus da Hepatite do Pato/fisiologia , Vírus da Hepatite do Pato/genética , Doenças das Aves Domésticas/virologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Hepatite Viral Animal/virologia , Biossíntese de ProteínasRESUMO
During the replication process, the herpesvirus genome forms the head-to-tail linked concatemeric genome, which is then cleaved and packaged into the capsid. The cleavage and packing process is carried out by the terminase complex, which specifically recognizes and cleaves the concatemeric genome. This process is governed by a cis-acting sequence in the genome, named the a sequence. The a sequence and genome cleavage have been described in some herpesviruses, but it remains unclear in duck plague virus. In this study, we analysed the location, composition, and conservation of a sequence in the duck plague virus genome. The structure of the DPV genome has an a sequence of (DR4)m-(DR2)n-pac1-S termini (32 bp)-L termini (32 bp)-pac2, and the length is 841 bp. Direct repeat (DR) sequences are conserved in different DPV strains, but the number of DR copies is inconsistent. Additionally, the typical DR1 sequence was not found in the DPV a sequence. The Pac1 and pac2 motifs are relatively conserved between DPV and other herpesviruses. Cleavage of the DPV concatemeric genome was detected, and the results showed that the DPV genome can form a concatemer and is cleaved into a monomer at a specific site. We also established a sensitive method, TaqMan dual qRTâPCR, to analyse genome cleavage. The ratio of concatemer to total viral genome was decreased during the replication process. These results will be critical for understanding the process of DPV genome cleavage, and the application of TaqMan dual qRTâPCR will greatly facilitate more in-depth research.
Assuntos
Patos , Herpesviridae , Animais , Patos/genética , DNA Viral/química , Sequência de Bases , Sequências Repetitivas de Ácido Nucleico , Herpesviridae/genética , Genoma ViralRESUMO
Duck plague virus (DPV) causes the highly pathogenic duck plague, and the envelope glycoprotein I (gI), as one of the key virulence genes, has not yet had its critical virulence sites identified through screening. This study used reverse genetics technology to target the gI, specifically within the DPV genome. Four DPV mutants with gI N-glycosylation site mutations were designed and constructed, and these mutant strains were successfully rescued. Our results confirmed that three asparagine residues of gI (N69, N78, and N265) are N-glycosylation sites, and western blot analysis substantiated that glycosylation at each predicted N-glycosylation site was compromised. The deglycosylation of gI leads to the protein misfolding and subsequent retention in the endoplasmic reticulum (ER). The subsequent deglycosylated gI is carried into the Golgi apparatus (GM130) in the interaction of gE. Compared to the parental virus, the mutated virus shows a 66.3% reduction in intercellular transmission capability. In ducks, the deglycosylation of gI significantly reduces DPV replication in vivo, thereby weakening the virulence of DPV. This study represents the first successful creation of a weak DPV virus strain by specific mutation at the N-glycosylation site. The findings provide a foundational understanding of DPV pathogenesis and form the basis for developing live attenuated vaccines against the disease.
Assuntos
Patos , Mardivirus , Doenças das Aves Domésticas , Proteínas do Envelope Viral , Animais , Glicosilação , Virulência , Doenças das Aves Domésticas/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Mardivirus/genética , Mardivirus/patogenicidade , Mardivirus/fisiologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologiaRESUMO
Non-volatile magnetic random-access memories have proposed the need for spin channel switching. However, this presents a challenge as each spin channel reacts differently to the external field. Tellurene is a semiconductor with a tunable bandgap, excellent stability, and high carrier concentration, but its lack of magnetic properties has hindered its application in spintronics. In this work, the influence of an external field on transition metal (TM)-doped ß-tellurene is systematically analysed from first principles. First, the active-learning moment-tensor-potential (MTP) is used to verify the thermal stability of the V-doped system with the MTP proving to be 900 times faster than the traditional method. Subsequently, under biaxial strain ranging from -2% to 10%, the V-doped system undergoes a gradual transition from a magnetic semiconductor to a spin-gapless semiconductor, and further to a half-metal and magnetic metal. The band structure can be maintained under an electric field. By examining the magnetic anisotropy energy, the lattice changes profoundly impact the electromagnetic properties, particularly with the TMs being sensitive to strain. Moreover, the band structure is reflected in the spin resolution current of the magnetic tunnel junction. This work investigates the response of doped ß-Te to external fields, revealing its potential applications in spintronics.
RESUMO
Natural compound-based treatments provide innovative ways for ulcerative colitis therapy. However, poor targeting and rapid degradation curtail its application, which needs to be addressed. Inspired by biomacromolecule-based materials, we have developed an orally administrated nanoparticle (GBP@HA NPs) using bovine serum albumin as a carrier for polyphenol delivery. The system synergizes galactosylated bovine serum albumin with two polyphenols, epigallocatechin gallate and tannic acid, which is then encased in "nanoarmor" of ε-Polylysine and hyaluronic acid to boost its stability and targeting. Remarkably, the nanoarmor demonstrated profound therapeutic effects in both acute and chronic mouse models of ulcerative colitis, mitigating disease symptoms via multiple mechanisms, regulating inflammation related factors and exerting a modulatory impact on gut microbiota. Further mechanistic investigations indicate that GBP@HA NPs may act through several pathways, including modulation of Keap1-Nrf2 and NF-κB signaling, as well as Caspase-1-dependent pyroptosis. Consequently, this novel armored nanotherapy promotes the way for enhanced polyphenol utilization in ulcerative colitis treatment research.
Assuntos
Colite Ulcerativa , Ácido Hialurônico , Nanopartículas , Colite Ulcerativa/tratamento farmacológico , Animais , Ácido Hialurônico/química , Camundongos , Nanopartículas/química , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Soroalbumina Bovina/química , Polilisina/química , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Catequina/uso terapêutico , Polifenóis/química , Polifenóis/farmacologia , Masculino , Taninos/química , Taninos/farmacologia , Taninos/uso terapêutico , Portadores de Fármacos/química , Microbioma Gastrointestinal/efeitos dos fármacosRESUMO
By integrating magnetic resonance-visible components with scaffold materials, hydrogel microspheres (HMs) become visible under magnetic resonance imaging(MRI), allowing for non-invasive, continuous, and dynamic monitoring of the distribution, degradation, and relationship of the HMs with local tissues. However, when these visualization components are physically blended into the HMs, it reduces their relaxation rate and specificity under MRI, weakening the efficacy of real-time dynamic monitoring. To achieve MRI-guided in vivo monitoring of HMs with tissue repair functionality, we utilized airflow control and photo-crosslinking methods to prepare alginate-gelatin-based dual-network hydrogel microspheres (G-AlgMA HMs) using gadolinium ions (Gd (III)), a paramagnetic MRI contrast agent, as the crosslinker. When the network of G-AlgMA HMs degrades, the cleavage of covalent bonds causes the release of Gd (III), continuously altering the arrangement and movement characteristics of surrounding water molecules. This change in local transverse and longitudinal relaxation times results in variations in MRI signal values, thus enabling MRI-guided in vivo monitoring of the HMs. Additionally, in vivo data show that the degradation and release of polypeptide (K2 (SL)6 K2 (KK)) from G-AlgMA HMs promote local vascular regeneration and soft tissue repair. Overall, G-AlgMA HMs enable non-invasive, dynamic in vivo monitoring of biomaterial degradation and tissue regeneration through MRI, which is significant for understanding material degradation mechanisms, evaluating biocompatibility, and optimizing material design.