Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 2): 243-251, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335148

RESUMO

Large-bandwidth pulses produced by cutting-edge X-ray free-electron lasers (FELs) are of great importance in research fields like material science and biology. In this paper, a new method to generate high-power ultrashort FEL pulses with tunable spectral bandwidth with spectral coherence using a dielectric-lined waveguide without interfering operation of linacs is proposed. By exploiting the passive and dephasingless wakefield at terahertz frequency excited by the beam, stable energy modulation can be achieved in the electron beam and large-bandwidth high-intensity soft X-ray radiation can be generated. Three-dimensional start-to-end simulations have been carried out and the results show that coherent radiation pulses with duration of a few femtoseconds and bandwidths ranging from 1.01% to 2.16% can be achieved by changing the undulator taper profile.

2.
J Synchrotron Radiat ; 30(Pt 6): 1054-1063, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37860938

RESUMO

Recently, a novel approach has been proposed to produce ultrashort, fully coherent high-repetition-rate EUV and X-ray radiation by combining an energy recovery linac (ERL) with the angular-dispersion-induced microbunching methodology. It is critical to maintain microbunching when the beam passes through bending magnets between the undulators, which results in difficulties supporting multiple beamlines. In this paper, the design of a multiplexed emitting system consisting of multi-bend achromats, matching sections and radiators to facilitate the multi-beamline operation is presented. Theoretical analysis and numerical simulations have been carried out and the results show that the microbunching and beam quality can be well maintained after four times of bending. Five radiation pulses with a central wavelength of 13.5 nm and peak power at the MW level have been produced by the same electron beam via this multiplexed emitting system. The proposed method holds potential in the multi-beamline operation of ERL- or storage-ring-based coherent light sources.

3.
Phys Rev Lett ; 131(20): 205002, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38039478

RESUMO

An attosecond x-ray pulse with known spectrotemporal information is an essential tool for the investigation of ultrafast electron dynamics in quantum systems. Ultrafast free-electron lasers (FELs) have the unique advantage on unprecedented high intensity at x-ray wavelengths. However, no suitable method has been established so far for the spectrotemporal characterization of these ultrashort x-ray pulses. In this Letter, a simple method has been proposed based on self-referenced spectral interferometry for reconstructing the temporal profile and phase of ultrashort FEL pulses. We have demonstrated that the proposed method is reliable to completely characterize the attosecond x-ray FEL pulses with an error at the level of a few percent. Moreover, the first proof-of-principle experiment has been performed to achieve the single-shot spectrotemporal characterization of ultrashort pulses from a high-gain FEL. The precision of the proposed method will be enhanced with the decrease of the pulse duration, paving a new way for complete attosecond pulse characterization at x-ray FELs.

4.
Phys Rev Lett ; 126(8): 084801, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709748

RESUMO

The spectroscopic techniques for time-resolved fine analysis of matter require coherent x-ray radiation with femtosecond duration and high average brightness. Seeded free-electron lasers (FELs), which use the frequency up-conversion of an external seed laser to improve temporal coherence, are ideal for providing fully coherent soft x-ray pulses. However, it is difficult to operate seeded FELs at a high repetition rate due to the limitations of present state-of-the-art laser systems. Here, we report a novel self-modulation method for enhancing laser-induced energy modulation, thereby significantly reducing the requirement of an external laser system. Driven by this scheme, we experimentally realize high harmonic generation in a seeded FEL using an unprecedentedly small external laser-induced energy modulation. An electron beam with a laser-induced energy modulation as small as 1.8 times the slice energy spread is used for lasing at the seventh harmonic of a 266-nm seed laser in a single-stage high-gain harmonic generation (HGHG) setup and the 30th harmonic of the seed laser in a two-stage HGHG setup. The results mark a major step toward a high-repetition-rate, fully coherent x-ray FEL.

5.
J Synchrotron Radiat ; 26(Pt 3): 677-684, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074430

RESUMO

Prebunching is an effective technique to reduce the radiation saturation length and to improve the longitudinal coherence and output stability in storage-ring-based free-electron lasers (FELs). A novel technique is proposed which uses angular dispersion to enhance the high-harmonic bunching with very small laser-induced energy spread. This technique can effectively reduce the radiation saturation length without significantly reducing the peak power of the FEL. Numerical simulations demonstrate that this technique can be used for the generation of 100 MW scale level, fully temporal coherent femtosecond extreme-ultraviolet and soft X-ray radiation pulses through a 10 m-long undulator based on a diffraction-limited storage ring.

6.
Sensors (Basel) ; 18(3)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543773

RESUMO

With the development of the Internet-of-Things (IoT), wireless network security has more and more attention paid to it. The Sybil attack is one of the famous wireless attacks that can forge wireless devices to steal information from clients. These forged devices may constantly attack target access points to crush the wireless network. In this paper, we propose a novel Sybil attack detection based on Channel State Information (CSI). This detection algorithm can tell whether the static devices are Sybil attackers by combining a self-adaptive multiple signal classification algorithm with the Received Signal Strength Indicator (RSSI). Moreover, we develop a novel tracing scheme to cluster the channel characteristics of mobile devices and detect dynamic attackers that change their channel characteristics in an error area. Finally, we experiment on mobile and commercial WiFi devices. Our algorithm can effectively distinguish the Sybil devices. The experimental results show that our Sybil attack detection system achieves high accuracy for both static and dynamic scenarios. Therefore, combining the phase and similarity of channel features, the multi-dimensional analysis of CSI can effectively detect Sybil nodes and improve the security of wireless networks.

7.
Opt Express ; 23(11): 14993-5002, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072855

RESUMO

Laser-plasma based accelerator has the potential to dramatically reduce the size and cost of future x-ray light sources to the university-laboratory scale. However, the large energy spread of the laser-plasma accelerated electron beam may hinder the way for short wavelength free-electron laser generation. In this paper, we propose a novel method for directly imprinting strong coherent micro-bunching on the electron beam with large intrinsic energy spread by using a wavefront-tilted conventional optical laser beam and a weak dipole magnet. Theoretical analysis and numerical simulations demonstrate that this technique can be used for the generation of fully coherent femtosecond soft x-ray radiation at gigawatts level with a very short undulator.

8.
Phys Rev Lett ; 114(11): 114801, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839281

RESUMO

High quality electron beams with flat distributions in both energy and current are critical for many accelerator-based scientific facilities such as free-electron lasers and MeV ultrafast electron diffraction and microscopes. In this Letter, we report on using corrugated structures to compensate for the beam nonlinear energy chirp imprinted by the curvature of the radio-frequency field, leading to a significant reduction in beam energy spread. By using a pair of corrugated structures with orthogonal orientations, we show that the quadrupole wakefields, which, otherwise, increase beam emittance, can be effectively canceled. This work also extends the applications of corrugated structures to the low beam charge (a few pC) and low beam energy (a few MeV) regime and may have a strong impact in many accelerator-based facilities.

9.
Opt Express ; 22(11): 13880-8, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24921579

RESUMO

All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

10.
Phys Rev Lett ; 113(25): 254802, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25554888

RESUMO

Removal of the undesired time-energy correlations in the electron beam is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it has been theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons themselves in a corrugated structure allows for precise control of the electron beam phase space. In this Letter, we report the first utilization of a corrugated structure as a beam linearizer in the operation of a seeded free-electron laser driven by a 140 MeV linear accelerator, where a gain of ∼10 000 over spontaneous emission was achieved at the second harmonic of the 1047 nm seed laser, and a free-electron laser bandwidth narrowing by 50% was observed, in good agreement with the theoretical expectations.

11.
Fundam Res ; 2(6): 929-936, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38933379

RESUMO

X-ray free-electron lasers (FELs) provide cutting-edge tools for fundamental researches to study nature down to the atomic level at a time-scale that fits this resolution. A precise knowledge of temporal information of FEL pulses is the central issue for its applications. Here we proposed and demonstrated a novel method to determine the FEL temporal profiles online. This robust method, designed for ultrafast FELs, allows researchers to acquire real-time longitudinal profiles of FEL pulses as well as their arrive times with respect to the external optical laser with a resolution better than 6 fs. Based on this method, we can also directly measure various properties of FEL pulses and correlations between them online. This helps us to further understand the FEL lasing processes and realize the generation of stable, nearly fully coherent soft X-ray laser pulses at the Shanghai Soft X-ray FEL facility. This method will enhance the experimental opportunities for ultrafast science in various areas.

12.
Innovation (Camb) ; 2(2): 100097, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34557749

RESUMO

Linear accelerator-based free-electron lasers (FELs) are the leading source of fully coherent X-rays with ultra-high peak powers and ultra-short pulse lengths. Current X-ray FEL facilities have proved their worth as useful tools for diverse scientific applications. In this paper, we present an overview of the features and future prospects of X-ray FELs, including the working principles and properties of X-ray FELs, the operational status of different FEL facilities worldwide, the applications supported by such facilities, and the current developments and outlook for X-ray FEL-based research.

13.
Sci Rep ; 9(1): 6960, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061391

RESUMO

The realization of fully coherent light sources at extreme ultraviolet to x-ray region has been a long-standing challenge for laser technologies. While modern single pass free-electron lasers (FELs) hold the ability to produce very intense x-ray radiation on few-femtosecond timescale, the output radiation pulses usually have noisy spectra and limited temporal coherence since the amplification starts from electron noise. A promising way for producing stable transform-limited pulses is based on the harmonic up-conversion techniques with a conventional laser as the seed. However, it is found that the insignificant phase error in the seed laser may be eventually multiplied by the harmonic number, leading to a degradation of the output temporal coherence at x-ray wavelength. Here, we report for the first time on the demonstration of a slippage boosted spectral cleaning technique to mitigate the impact of seed laser induced phase errors and to significantly improve the temporal coherence of a seeded FEL with large phase errors in the seed laser. Experimental results indicate the possibility of generating fully coherent x-ray radiation pulses with this technique.

14.
Sci Rep ; 7(1): 4724, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680101

RESUMO

Generation of ultrashort coherent radiation pulses in the extreme ultraviolet (EUV) and x-ray regime is of remarkable interest in the synchrotron radiation user community. In this work, a novel technique is proposed for directly imprinting strong coherent microbunching on the electron beam with very small laser-induced energy spread. Theoretical analysis and numerical simulations demonstrated that this technique can be used for the generation of megawatt-scale level, fully temporal coherent femtosecond EUV and soft x-ray radiation pulses at a storage ring light source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA