Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.991
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 182(5): 1271-1283.e16, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32795413

RESUMO

There is an urgent need for vaccines against coronavirus disease 2019 (COVID-19) because of the ongoing SARS-CoV-2 pandemic. Among all approaches, a messenger RNA (mRNA)-based vaccine has emerged as a rapid and versatile platform to quickly respond to this challenge. Here, we developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2 as a vaccine candidate (called ARCoV). Intramuscular immunization of ARCoV mRNA-LNP elicited robust neutralizing antibodies against SARS-CoV-2 as well as a Th1-biased cellular response in mice and non-human primates. Two doses of ARCoV immunization in mice conferred complete protection against the challenge of a SARS-CoV-2 mouse-adapted strain. Additionally, ARCoV is manufactured as a liquid formulation and can be stored at room temperature for at least 1 week. ARCoV is currently being evaluated in phase 1 clinical trials.


Assuntos
RNA Mensageiro/genética , RNA Viral/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Vacinas contra COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Feminino , Células HEK293 , Células HeLa , Humanos , Imunogenicidade da Vacina , Injeções Intramusculares , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/química , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Th1/imunologia , Potência de Vacina , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Células Vero , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
2.
Cell ; 183(5): 1219-1233.e18, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33242418

RESUMO

Cancer therapies kill tumors either directly or indirectly by evoking immune responses and have been combined with varying levels of success. Here, we describe a paradigm to control cancer growth that is based on both direct tumor killing and the triggering of protective immunity. Genetic ablation of serine protease inhibitor SerpinB9 (Sb9) results in the death of tumor cells in a granzyme B (GrB)-dependent manner. Sb9-deficient mice exhibited protective T cell-based host immunity to tumors in association with a decline in GrB-expressing immunosuppressive cells within the tumor microenvironment (TME). Maximal protection against tumor development was observed when the tumor and host were deficient in Sb9. The therapeutic utility of Sb9 inhibition was demonstrated by the control of tumor growth, resulting in increased survival times in mice. Our studies describe a molecular target that permits a combination of tumor ablation, interference within the TME, and immunotherapy in one potential modality.


Assuntos
Citotoxicidade Imunológica , Imunoterapia , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Serpinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Progressão da Doença , Feminino , Deleção de Genes , Granzimas/metabolismo , Imunidade/efeitos dos fármacos , Melanoma/patologia , Camundongos Endogâmicos C57BL , Neoplasias/prevenção & controle , Bibliotecas de Moléculas Pequenas/farmacologia , Células Estromais/efeitos dos fármacos , Células Estromais/patologia , Microambiente Tumoral/efeitos dos fármacos
3.
Cell ; 179(6): 1342-1356.e23, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31759698

RESUMO

Mammalian switch/sucrose non-fermentable (mSWI/SNF) complexes are multi-component machines that remodel chromatin architecture. Dissection of the subunit- and domain-specific contributions to complex activities is needed to advance mechanistic understanding. Here, we examine the molecular, structural, and genome-wide regulatory consequences of recurrent, single-residue mutations in the putative coiled-coil C-terminal domain (CTD) of the SMARCB1 (BAF47) subunit, which cause the intellectual disability disorder Coffin-Siris syndrome (CSS), and are recurrently found in cancers. We find that the SMARCB1 CTD contains a basic α helix that binds directly to the nucleosome acidic patch and that all CSS-associated mutations disrupt this binding. Furthermore, these mutations abrogate mSWI/SNF-mediated nucleosome remodeling activity and enhancer DNA accessibility without changes in genome-wide complex localization. Finally, heterozygous CSS-associated SMARCB1 mutations result in dominant gene regulatory and morphologic changes during iPSC-neuronal differentiation. These studies unmask an evolutionarily conserved structural role for the SMARCB1 CTD that is perturbed in human disease.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Mutação/genética , Nucleossomos/metabolismo , Proteína SMARCB1/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Elementos Facilitadores Genéticos/genética , Feminino , Genoma Humano , Células HEK293 , Células HeLa , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Domínios Proteicos , Proteína SMARCB1/química , Proteína SMARCB1/metabolismo
4.
Nature ; 618(7967): 959-966, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37380692

RESUMO

Electrochemical carbon-capture technologies, with renewable electricity as the energy input, are promising for carbon management but still suffer from low capture rates, oxygen sensitivity or system complexity1-6. Here we demonstrate a continuous electrochemical carbon-capture design by coupling oxygen/water (O2/H2O) redox couple with a modular solid-electrolyte reactor7. By performing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) redox electrolysis, our device can efficiently absorb dilute carbon dioxide (CO2) molecules at the high-alkaline cathode-membrane interface to form carbonate ions, followed by a neutralization process through the proton flux from the anode to continuously output a high-purity (>99%) CO2 stream from the middle solid-electrolyte layer. No chemical inputs were needed nor side products generated during the whole carbon absorption/release process. High carbon-capture rates (440 mA cm-2, 0.137 mmolCO2 min-1 cm-2 or 86.7 kgCO2 day-1 m-2), high Faradaic efficiencies (>90% based on carbonate), high carbon-removal efficiency (>98%) in simulated flue gas and low energy consumption (starting from about 150 kJ per molCO2) were demonstrated in our carbon-capture solid-electrolyte reactor, suggesting promising practical applications.

5.
Nature ; 611(7935): 326-331, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174646

RESUMO

The Toll/interleukin-1 receptor (TIR) domain is a key component of immune receptors that identify pathogen invasion in bacteria, plants and animals1-3. In the bacterial antiphage system Thoeris, as well as in plants, recognition of infection stimulates TIR domains to produce an immune signalling molecule whose molecular structure remains elusive. This molecule binds and activates the Thoeris immune effector, which then executes the immune function1. We identified a large family of phage-encoded proteins, denoted here as Thoeris anti-defence 1 (Tad1), that inhibit Thoeris immunity. We found that Tad1 proteins are 'sponges' that bind and sequester the immune signalling molecule produced by TIR-domain proteins, thus decoupling phage sensing from immune effector activation and rendering Thoeris inactive. Tad1 can also efficiently sequester molecules derived from a plant TIR-domain protein, and a high-resolution crystal structure of Tad1 bound to a plant-derived molecule showed a unique chemical structure of 1 ''-2' glycocyclic ADPR (gcADPR). Our data furthermore suggest that Thoeris TIR proteins produce a closely related molecule, 1''-3' gcADPR, which activates ThsA an order of magnitude more efficiently than the plant-derived 1''-2' gcADPR. Our results define the chemical structure of a central immune signalling molecule and show a new mode of action by which pathogens can suppress host immunity.


Assuntos
Bactérias , Bacteriófagos , Domínios Proteicos , Receptores de Interleucina-1 , Transdução de Sinais , Receptores Toll-Like , Proteínas Virais , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores de Interleucina-1/química , Transdução de Sinais/imunologia , Bacteriófagos/química , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Proteínas Virais/química , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Receptores Toll-Like/química , Cristalografia por Raios X
6.
EMBO Rep ; 25(2): 796-812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177920

RESUMO

Although many long noncoding RNAs have been discovered in plants, little is known about their biological function and mode of action. Here we show that the drought-induced long intergenic noncoding RNA DANA1 interacts with the L1p/L10e family member protein DANA1-INTERACTING PROTEIN 1 (DIP1) in the cell nucleus of Arabidopsis, and both DANA1 and DIP1 promote plant drought resistance. DANA1 and DIP1 increase histone deacetylase HDA9 binding to the CYP707A1 and CYP707A2 loci. DIP1 further interacts with PWWP3, a member of the PEAT complex that associates with HDA9 and has histone deacetylase activity. Mutation of DANA1 enhances CYP707A1 and CYP707A2 acetylation and expression resulting in impaired drought tolerance, in agreement with dip1 and pwwp3 mutant phenotypes. Our results demonstrate that DANA1 is a positive regulator of drought response and that DANA1 works jointly with the novel chromatin-related factor DIP1 on epigenetic reprogramming of the plant transcriptome during the response to drought.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Resistência à Seca , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Secas , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Chromosoma ; 133(2): 149-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456964

RESUMO

In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.


Assuntos
Proteínas Cromossômicas não Histona , Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Espermatócitos , Animais , Masculino , Ratos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Cinesinas/metabolismo , Cinesinas/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Espermatócitos/metabolismo , Espermatócitos/citologia , Espermatogênese , Fuso Acromático/metabolismo , Testículo/metabolismo , Testículo/citologia
8.
Lancet ; 403(10445): 2720-2731, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38824941

RESUMO

BACKGROUND: Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18-65 years with newly diagnosed high-risk non-metastatic stage III-IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3-4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. FINDINGS: Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0-44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81-90] vs 76% [70-81]; stratified hazard ratio 0·59 [0·38-0·92]; p=0·019). Grade 3-4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3-4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. INTERPRETATION: Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. FUNDING: National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Anticorpos Monoclonais Humanizados , Quimiorradioterapia , Quimioterapia de Indução , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/tratamento farmacológico , Adulto , China/epidemiologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/terapia , Quimiorradioterapia/métodos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Idoso , Cisplatino/uso terapêutico , Cisplatino/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Gencitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Desoxicitidina/administração & dosagem , Adulto Jovem , Adolescente , Intervalo Livre de Progressão
9.
Plant Physiol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635971

RESUMO

Rapid postharvest physiological deterioration (PPD) of cassava (Manihot esculenta Crantz) storage roots is a major constraint that limits the potential of this plant as a food and industrial crop. Extensive studies have been performed to explore the regulatory mechanisms underlying the PPD processes in cassava to understand their molecular and physiological responses. However, the exceptional functional versatility of alternative splicing (AS) remains to be explored during the PPD process in cassava. Here, we identified several aberrantly spliced genes during the early PPD stage. An in-depth analysis of AS revealed that the abscisic acid (ABA) biosynthesis pathway might serve as an additional molecular layer in attenuating the onset of PPD. Exogenous ABA application alleviated PPD symptoms through maintaining ROS generation and scavenging. Interestingly, the intron retention transcript of MeABA1 (ABA DEFICIENT 1) was highly correlated with PPD symptoms in cassava storage roots. RNA yeast three-hybrid and RNA immunoprecipitation assays showed that the serine/arginine-rich protein MeSCL33 (SC35-like splicing factor 33) binds to the precursor mRNA of MeABA1. Importantly, overexpressing MeSCL33 in cassava conferred improved PPD resistance by manipulating the AS and expression levels of MeABA1 and then modulating the endogenous ABA levels in cassava storage roots. Our results uncovered the pivotal role of the ABA biosynthesis pathway and RNA splicing in regulating cassava PPD resistance and proposed the essential roles of MeSCL33 for conferring PPD resistance, broadening our understanding of SR proteins in cassava development and stress responses.

10.
Plant Physiol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717740

RESUMO

The circadian system plays a pivotal role in facilitating the ability of crop plants to respond and adapt to fluctuations in their immediate environment effectively. Despite the increasing comprehension of PSEUDO-RESPONSE REGULATORs (PRRs) and their involvement in the regulation of diverse biological processes, including circadian rhythms, photoperiodic control of flowering, and responses to abiotic stress, the transcriptional networks associated with these factors in soybean (Glycine max (L.) Merr.) remain incompletely characterized. In this study, we provide empirical evidence highlighting the significance of GmPRR3b as a crucial mediator in regulating the circadian clock, drought stress response, and abscisic acid (ABA) signaling pathway in soybeans. A comprehensive analysis of DNA affinity purification sequencing and transcriptome data identified 795 putative target genes directly regulated by GmPRR3b. Among them, a total of 570 exhibited a significant correlation with the response to drought, and eight genes were involved in both the biosynthesis and signaling pathways of ABA. Notably, GmPRR3b played a pivotal role in the negative regulation of the drought response in soybeans by suppressing the expression of abscisic acid responsive element-binding factor 3 (GmABF3). Additionally, the overexpression of GmABF3 exhibited an increased ability to tolerate drought conditions, and it also restored the hypersensitive phenotype of the GmPRR3b overexpressor. Consistently, studies on the manipulation of GmPRR3b gene expression and genome editing in plants revealed contrasting reactions to drought stress. The findings of our study collectively provide compelling evidence that emphasizes the significant contribution of the GmPRR3b-GmABF3 module in enhancing drought tolerance in soybean plants. Moreover, the transcriptional network of GmPRR3b provides valuable insights into the intricate interactions between this gene and the fundamental biological processes associated with plant adaptation to diverse environmental conditions.

11.
Exp Cell Res ; 436(1): 113975, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367657

RESUMO

Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.


Assuntos
Fácies , Linfedema , Microcefalia , Doenças Retinianas , Displasia Retiniana , Animais , Pontos de Checagem do Ciclo Celular/genética , Instabilidade Cromossômica , Deficiências do Desenvolvimento , Cinesinas/genética , Cinesinas/metabolismo , Microcefalia/genética , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
12.
Mol Ther ; 32(4): 878-889, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38311850

RESUMO

Cardiac fibrosis, a crucial pathological characteristic of various cardiac diseases, presents a significant treatment challenge. It involves the deposition of the extracellular matrix (ECM) and is influenced by genetic and epigenetic factors. Prior investigations have predominantly centered on delineating the substantial influence of epigenetic and epitranscriptomic mechanisms in driving the progression of fibrosis. Recent studies have illuminated additional avenues for modulating the progression of fibrosis, offering potential solutions to the challenging issues surrounding fibrosis treatment. In the context of cardiac fibrosis, an intricate interplay exists between m6A epitranscriptomic and epigenetics. This interplay governs various pathophysiological processes: mitochondrial dysfunction, mitochondrial fission, oxidative stress, autophagy, apoptosis, pyroptosis, ferroptosis, cell fate switching, and cell differentiation, all of which affect the advancement of cardiac fibrosis. In this comprehensive review, we meticulously analyze pertinent studies, emphasizing the interplay between m6A epitranscriptomics and partial epigenetics (including histone modifications and noncoding RNA), aiming to provide novel insights for cardiac fibrosis treatment.


Assuntos
Cardiopatias , Humanos , Adenina , Epigênese Genética , Fibrose
13.
Cell Mol Life Sci ; 81(1): 233, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780775

RESUMO

Patients with head and neck squamous cell carcinoma (HNSCC) are at a high risk of developing recurrence and secondary cancers. This study evaluates the prognostic and surveillance utilities of circulating tumour cells (CTCs) in HNSCC. A total of 154 HNSCC patients were recruited and followed up for 4.5 years. Blood samples were collected at baseline and follow-up. CTCs were isolated using a spiral microfluid device. Recurrence and death due to cancer were assessed during the follow-up period. In patients with HNSCC, the presence of CTCs at baseline was a predictor of recurrence (OR = 8.40, p < 0.0001) and death (OR= ∞, p < 0.0001). Patients with CTCs at baseline had poor survival outcomes (p < 0.0001). Additionally, our study found that patients with CTCs in a follow-up appointment were 2.5 times more likely to experience recurrence or death from HNSCC (p < 0.05) prior to their next clinical visit. Our study highlights the prognostic and monitoring utilities of CTCs' in HNSCC patients. Early identification of CTCs facilitates precise risk assessment, guiding treatment choices and ultimately enhancing patient outcomes.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Recidiva Local de Neoplasia , Células Neoplásicas Circulantes , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Masculino , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/sangue , Neoplasias de Cabeça e Pescoço/diagnóstico , Feminino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/sangue , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Idoso , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/diagnóstico , Prognóstico , Adulto , Seguimentos
14.
Nano Lett ; 24(20): 6084-6091, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717110

RESUMO

Chiral perovskites play a pivotal role in spintronics and optoelectronic systems attributed to their chiral-induced spin selectivity (CISS) effect. Specifically, they allow for spin-polarized charge transport in spin light-emitting diodes (LEDs), yielding circularly polarized electroluminescence at room temperature without external magnetic fields. However, chiral lead bromide-based perovskites have yet to achieve high-performance green emissive spin-LEDs, owing to limited CISS effects and charge transport. Herein, we employ dimensional regulation and Sn2+-doping to optimize chiral bromide-based perovskite architecture for green emissive spin-LEDs. The optimized (PEA)x(S/R-PRDA)2-xSn0.1Pb0.9Br4 chiral perovskite film exhibits an enhanced CISS effect, higher hole mobility, and better energy level alignment with the emissive layer. These improvements allow us to fabricate green emissive spin-LEDs with an external quantum efficiency (EQE) of 5.7% and an asymmetry factor |gCP-EL| of 1.1 × 10-3. This work highlights the importance of tailored perovskite architectures and doping strategies in advancing spintronics for optoelectronic applications.

15.
J Biol Chem ; 299(10): 105220, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660921

RESUMO

Pharmacological inhibition of mitochondrial fatty acid oxidation (FAO) has been clinically used to alleviate certain metabolic diseases by remodeling cellular metabolism. However, mitochondrial FAO inhibition also leads to mechanistic target of rapamycin complex 1 (mTORC1) activation-related protein synthesis and tissue hypertrophy, but the mechanism remains unclear. Here, by using a mitochondrial FAO inhibitor (mildronate or etomoxir) or knocking out carnitine palmitoyltransferase-1, we revealed that mitochondrial FAO inhibition activated the mTORC1 pathway through general control nondepressible 5-dependent Raptor acetylation. Mitochondrial FAO inhibition significantly promoted glucose catabolism and increased intracellular acetyl-CoA levels. In response to the increased intracellular acetyl-CoA, acetyltransferase general control nondepressible 5 activated mTORC1 by catalyzing Raptor acetylation through direct interaction. Further investigation also screened Raptor deacetylase histone deacetylase class II and identified histone deacetylase 7 as a potential regulator of Raptor. These results provide a possible mechanistic explanation for the mTORC1 activation after mitochondrial FAO inhibition and also bring light to reveal the roles of nutrient metabolic remodeling in regulating protein acetylation by affecting acetyl-CoA production.

16.
Immunology ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022997

RESUMO

Tuberculosis (TB) is still an urgent global public health problem. Notably, mucosal-associated invariant T (MAIT) cells play an important role in early anti-TB immune response. Targeted control of them may be an effective method to improve vaccine efficacy and TB treatment. However, the biology and signal regulation mechanisms of MAIT cells in TB patients are still poorly understood. Previous studies have been limited by the lack of reagents to specifically identify MAIT cells. In addition, the use of alternative markers may subsume non-MAIT cell into MAIT cell populations. In this study, the human MR1 tetramer which can specifically identify MAIT cells was used to further explore the effect and mechanism of MAIT cells in anti-TB immune response. Our results showed that the tetramer+ MAIT cells in peripheral blood of TB patients were mainly CD8+ or CD4-CD8- cells, and very few were CD4+ cells. After BCG infecting autologous antigen-presenting cells, MAIT cells in patients produced significantly higher levels of cytokines, lysis and proliferation compared with healthy controls. After suppression of mTORC1 by the mTORC1-specific inhibitor rapamycin, the immune response of MAIT cells in patients was significantly reduced. This study demonstrates that peripheral blood tetramer+ MAIT cells from TB patients have significant anti-TB immune effect, which is regulated by mTORC1. This could provide ideas and potential therapeutic targets for the development of novel anti-TB immunotherapy.

17.
J Am Chem Soc ; 146(9): 5964-5976, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381843

RESUMO

Fluorinated ethers have become promising electrolyte solvent candidates for lithium metal batteries (LMBs) because they are endowed with high oxidative stability and high Coulombic efficiencies of lithium metal stripping/plating. Up to now, most reported fluorinated ether electrolytes are -CF3-based, and the influence of ion solvation in modifying degree of fluorination has not been well-elucidated. In this work, we synthesize a hexacyclic coordinated ether (1-methoxy-3-ethoxypropane, EMP) and its fluorinated ether counterparts with -CH2F (F1EMP), -CHF2 (F2EMP), or -CF3 (F3EMP) as terminal group. With lithium bis(fluorosulfonyl)imide as single salt, the solvation structure, Li-ion transport behavior, lithium deposition kinetics, and high-voltage stability of the electrolytes were systematically studied. Theoretical calculations and spectra reveal the gradually reduced solvating power from nonfluorinated EMP to fully fluorinated F3EMP, which leads to decreased ionic conductivity. In contrast, the weakly solvating fluorinated ethers possess higher Li+ transference number and exchange current density. Overall, partially fluorinated -CHF2 is demonstrated as the desired group. Further full cell testing using high-voltage (4.4 V) and high-loading (3.885 mAh cm-2) LiNi0.8Co0.1Mn0.1O2 cathode demonstrates that F2EMP electrolyte enables 80% capacity retention after 168 cycles under limited Li (50 µm) and lean electrolyte (5 mL Ah-1) conditions and 129 cycles under extremely lean electrolyte (1.8 mL Ah-1) and the anode-free conditions. This work deepens the fundamental understanding on the ion transport and interphase dynamics under various degrees of fluorination and provides a feasible approach toward the design of fluorinated ether electrolytes for practical high-voltage LMBs.

18.
J Am Chem Soc ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598684

RESUMO

Cross-coupling reactions represent an indispensable tool in chemical synthesis. An intriguing challenge in this field is to achieve selective cross-coupling between two precursors with similar reactivity or, to the limit, the identical molecules. Here we report an unexpected dehydrobrominative cross-coupling between 1,3,5-tris(2-bromophenyl)benzene molecules on silver surfaces. Using scanning tunneling microscopy, we examine the reaction process at the single-molecular level, quantify the selectivity of the dehydrobrominative cross-coupling, and reveal the modulation of selectivity by substrate lattice-related catalytic activity or molecular assembly effect. Theoretical calculations indicate that the dehydrobrominative cross-coupling proceeds via regioselective C-H bond activation of debrominated TBPB and subsequent highly selective C-C coupling of the radical-based intermediates. The reaction kinetics plays an important role in the selectivity for the cross-coupling. This work not only expands the toolbox for chemical synthesis but also provides important mechanistic insights into the selectivity of coupling reactions on the surface.

19.
Int J Cancer ; 154(3): 530-537, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815300

RESUMO

Several observational studies have reported an association between obesity and primary liver cancer (PLC), while the causality behind this association and the comparison of the risk effects of different obesity indicators on PLC remain unclear. In this study, we performed two-sample Mendelian randomization (MR) analyses to assess the associations of genetically determined liver fat, visceral adipose tissue (VAT), and body mass index (BMI) with the risk of PLC. The summary statistics of exposures were obtained from two genome-wide association studies (GWASs) based on the UK Biobank (UKB) imaging cohort and the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. GWAS summary statistics for PLC were obtained from FinnGen consortium R7 release data, including 304 PLC cases and 218 488 controls. Inverse-variance weighted (IVW) was used as the primary analysis, and a series of sensitivity analyses were performed to further verify the robustness of these findings. IVW analysis highlighted a significant association of genetically determined liver fat (OR per SD increase: 7.14; 95% CI: 5.10-9.99; P = 2.35E-30) and VAT (OR per SD increase: 5.70; 95% CI: 1.32-24.72; P = .020) with PLC but not of BMI with PLC. The findings were further confirmed by a series of MR methods. No evidence of horizontal pleiotropy between these associations existed. Our study suggested that genetically determined liver fat and VAT rather than BMI were associated with an increased risk of PLC, which suggested that visceral fat distribution is more predictive of the clinical risk of PLC than common in vitro measures.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Hepáticas , Adulto , Humanos , Análise da Randomização Mendeliana , Obesidade/complicações , Obesidade/genética , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Polimorfismo de Nucleotídeo Único
20.
Oncologist ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990195

RESUMO

BACKGROUND: Encouraging antitumor activity of nab-paclitaxel plus S-1 (AS) has been shown in several small-scale studies. This study compared the efficacy and safety of AS versus standard-of-care nab-paclitaxel plus gemcitabine (AG) as a first-line treatment for advanced pancreatic cancer (PC). METHODS: In this multicenter, randomized, phase II trial, eligible patients with unresectable, locally advanced, or metastatic PC were recruited and randomly assigned (1:1) to receive AS (nab-paclitaxel 125 mg/m2 on days 1 and 8; S-1 twice daily on days 1 through 14) or AG (nab-paclitaxel 125 mg/m2 on days 1 and 8; gemcitabine 1000 mg/m2 on days 1 and 8) for 6 cycles. The primary endpoint was progression-free survival (PFS). RESULTS: Between July 16, 2019, and September 9, 2022, 62 patients (AS, n = 32; AG, n = 30) were treated and evaluated. With a median follow-up of 8.36 months at preplanned interim analysis (data cutoff, March 24, 2023), the median PFS (8.48 vs 4.47 months; hazard ratio [HR], 0.402; P = .002) and overall survival (OS; 13.73 vs 9.59 months; HR, 0.226; P < .001) in the AS group were significantly longer compared to the AG group. More patients had objective response in the AS group than AG group (37.50% vs 6.67%; P = .005). The most common grade 3-4 adverse events were neutropenia and leucopenia in both groups, and gamma glutamyl transferase increase was observed only in the AG group. CONCLUSION: The first-line AS regimen significantly extended both PFS and OS of Chinese patients with advanced PC when compared with the AG regimen, with a comparable safety profile. (ClinicalTrials.gov Identifier: NCT03636308).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA