Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Small ; 20(28): e2311055, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38295001

RESUMO

Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+-reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1, and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.

2.
Small ; 20(31): e2400141, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38431944

RESUMO

Seawater electrolysis holds tremendous promise for the generation of green hydrogen (H2). However, the system of seawater-to-H2 faces significant hurdles, primarily due to the corrosive effects of chlorine compounds, which can cause severe anodic deterioration. Here, a nickel phosphide nanosheet array with amorphous NiMoO4 layer on Ni foam (Ni2P@NiMoO4/NF) is reported as a highly efficient and stable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater. Such Ni2P@NiMoO4/NF requires overpotentials of just 343 and 370 mV to achieve industrial-level current densities of 500 and 1000 mA cm-2, respectively, surpassing that of Ni2P/NF (470 and 555 mV). Furthermore, it maintains consistent electrolysis for over 500 h, a significant improvement compared to that of Ni2P/NF (120 h) and Ni(OH)2/NF (65 h). Electrochemical in situ Raman spectroscopy, stability testing, and chloride extraction analysis reveal that is situ formed MoO4 2-/PO4 3- from Ni2P@NiMoO4 during the OER test to the electrode surface, thus effectively repelling Cl- and hindering the formation of harmful ClO-.

3.
Front Nutr ; 11: 1365580, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487634

RESUMO

Background: There is growing evidence that antioxidant-rich diets may prevent hyperlipidemia. However, the relationship between the Composite Dietary Antioxidant Index (CDAI) and hyperlipidemia is unclear. The CDAI is a composite score reflecting the antioxidant content of an individual's diet, and this study aimed to investigate the relationship between CDAI and hyperlipidemia. Methods: The study used the 2003-2018 National Health and Nutrition Examination Survey (NHANES) database for cross-sectional analyses and included 27,626 participants aged 20 years and older. The CDAI, which includes vitamins A, C, and E, zinc, selenium, and carotenoids, was calculated based on dietary intake reported in a 24-h recall interview. Hyperlipidemia was defined by the National Cholesterol Education Program (NCEP). Covariates included age, sex, race, education, marriage, household poverty-to-income ratio (PIR), glomerular filtration rate (eGFR), body mass index (BMI), energy, carbohydrates, total fat, cholesterol, smoking, alcohol consumption, hypertension, diabetes mellitus, coronary heart disease, and lipid-lowering medications. The association between CDAI and hyperlipidemia was explored through multiple logistic regression analyses and smoothed curve fitting. We also performed subgroup analyses and interaction tests to verify the relationship's stability. Results: After adjusting for potential confounders, CDAI was negatively associated with the risk of developing hyperlipidemia (OR 0.98, 95% CI 0.96-0.99, p < 0.01). The results of weighted regression models stratified by quartiles of CDAI (-8.664 ≤ Q1 ≤ -2.209, -2.209 < Q2 ≤ -0.002, -0.002 < Q3 ≤ 2.774, 2.774 < Q4 ≤ 124.284), fully adjusted for confounding variables, indicated that compared with the bottom quartile (Q1) of the CDAI, Q2, Q3, and Q4 of participants had a lower advantage ratio (Q2: OR 0.91, 95% CI 0.78-1.06, p < 0.21; Q3: OR 0.85, 95% CI 0.73-1.00, p < 0.05; and Q4: OR 0.77, 95% CI 0.64-0.94, p < 0.01), which was confirmed by a test for trend (p < 0.05). Smoothed curve fit analysis showed linearity (p for non-linear = 0.0912). In summary, there is a linear negative relationship between CDAI and the risk of developing hyperlipidemia. Subgroup analyses by age, sex, ethnicity, education level, marriage, tobacco status, alcoholic drinking, body mass index (BMI), hypertension, and diabetes did not indicate strong interactions. Conclusion: In this large cross-sectional study, there was a linear negative association between CDAI and hyperlipidemia among US adults. Therefore increase antioxidant rich foods in your life as a prevention of hyperlipidemia.

4.
Front Cardiovasc Med ; 11: 1341229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784171

RESUMO

Objectives: This study focused on the association between visceral adiposity index (VAI) and the prevalence of hypertension in a nationally representative population of American adults. Methods: The study obtained data from the National Health and Nutrition Examination Survey (NHANES) database from 2003-2018 for a large-scale study. This study incorporated participants ≥18 years of age. Multivariate logistic regression modelling and smoothed curve fitting were applied to investigate the existence of a correlation between VAI and hypertension prevalence. Subgroups were analyzed to confirm the stationarity of the association between VAI and hypertension prevalence. In addition, an interaction test was conducted in this study. Results: In completely adapted sequential models, the risk of hypertension prevalence in the overall population increased 0.17-fold with each 1-unit increase in VAI [odds ratio (OR) = 1.17; 95% confidence interval (CI) 1.12-1.22]. In the wholly adapted categorical model, there was a 0.95-fold increased risk of hypertension in the population of VAI quartile 4 (Q4) vs. VAI quartile 1 (Q1) (OR = 1.95; 95% CI 1.62-2.35). These results indicate that VAI was strongly related to the occurrence of hypertension, and smoothed curve-fitting analysis showed nonlinearity. Adjustment for covariates revealed no apparent interactions in the subgroup analyses, and results were stable across subgroups. Conclusion: This cross-sectional study suggests a nonlinear and positive correlation between elevated VAI and the adult risk of developing hypertension in U.S. adults.

5.
PLoS One ; 19(4): e0299285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662713

RESUMO

OBJECTIVE: To investigate the association between the visceral adiposity index and the prevalence of diabetes and prediabetes in the US adult population. METHOD: We conducted a cross-sectional study using data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018 for ten consecutive years, including 18745 eligible participants. The weighted multivariate logistic model and fitting curve were used to explore the correlation and dose-response relationship between visceral adiposity index (VAI) and diabetes (DM) and prediabetes in the general population and the prevalence of different subgroups. RESULTS: In the fully adjusted continuous model, the risk of diabetes and prediabetes in the general population increased 0.15 times [1.15 (1.10,1.20), p<0.0001] with every increase of 1 unit of VAI. In the fully adjusted classification model, with the lowest quartile array Q1 of VAI as the reference group, Q2 of the second Quantile group, Q3 of the third Quantile group, and Q4 of the Quartile group increased 0.26 times [1.26 (1.10,1.44), p<0.001], 0.65 times [1.65 (1.43,1.89), p<0.0001], 1.60 times [2.60 (2.28,2.97), p<0.0001] respectively with the risk of diabetes and prediabetes. The above results showed that VAI was positively associated with the prevalence of diabetes and prediabetes, and the fitted curves showed a non-linear trend. (P for non-linear = 0<0.05). The results of the subgroup population were consistent with the total population and a significant interaction was found in gender (P for interaction<0.0001). CONCLUSION: In conclusion, we found a non-linear positive association between VAI and the risk of diabetes and prediabetes in the US adult population and found that women have a higher risk of diabetes and prediabetes than men; therefore, we should focus on the female population, and we call for the use of VAI to manage the development of diabetes and prediabetes in the clinical setting.


Assuntos
Gordura Intra-Abdominal , Inquéritos Nutricionais , Estado Pré-Diabético , Humanos , Estado Pré-Diabético/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Transversais , Fatores de Risco , Prevalência , Diabetes Mellitus/epidemiologia , Estados Unidos/epidemiologia , Adiposidade , Idoso , Obesidade Abdominal/epidemiologia , Obesidade Abdominal/complicações
6.
Medicine (Baltimore) ; 103(19): e38091, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728467

RESUMO

To screen immune-related prognostic biomarkers in low-grade glioma (LGG), and reveal the potential regulatory mechanism. The differential expressed genes (DEGs) between alive and dead patients were initially identified, then the key common genes between DEGs and immune-related genes were obtained. Regarding the key DEGs associated with the overall survival (OS), their clinical value was assessed by Kaplan-Meier, RCS, logistic regression, ROC, and decision curve analysis methods. We also assessed the role of immune infiltration on the association between key DEGs and OS. All the analyses were based on the TGCA-LGG data. Finally, we conducted the molecular docking analysis to explore the targeting binding of key DEGs with the therapeutic agents in LGG. Among 146 DEGs, only interleukin-6 (IL-6) was finally screened as an immune-related biomarker. High expression of IL-6 significantly correlated with poor OS time (all P < .05), showing a linear relationship. The combination of IL-6 with IDH1 mutation had the most favorable prediction performance on survival status and they achieved a good clinical net benefit. Next, we found a significant relationship between IL-6 and immune microenvironment score, and the immune microenvironment played a mediating effect on the association of IL-6 with survival (all P < .05). Detailly, IL-6 was positively related to M1 macrophage infiltration abundance and its biomarkers (all P < .05). Finally, we obtained 4 therapeutic agents in LGG targeting IL-6, and their targeting binding relationships were all verified. IL6, as an immune-related biomarker, was associated with the prognosis in LGG, and it can be a therapeutic target in LGG.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Glioma , Interleucina-6 , Microambiente Tumoral , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Glioma/imunologia , Glioma/genética , Glioma/mortalidade , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Biomarcadores Tumorais/genética , Feminino , Estimativa de Kaplan-Meier , Regulação Neoplásica da Expressão Gênica
7.
Nat Commun ; 15(1): 2950, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580635

RESUMO

Seawater electroreduction is attractive for future H2 production and intermittent energy storage, which has been hindered by aggressive Mg2+/Ca2+ precipitation at cathodes and consequent poor stability. Here we present a vital microscopic bubble/precipitate traffic system (MBPTS) by constructing honeycomb-type 3D cathodes for robust anti-precipitation seawater reduction (SR), which massively/uniformly release small-sized H2 bubbles to almost every corner of the cathode to repel Mg2+/Ca2+ precipitates without a break. Noticeably, the optimal cathode with built-in MBPTS not only enables state-of-the-art alkaline SR performance (1000-h stable operation at -1 A cm-2) but also is highly specialized in catalytically splitting natural seawater into H2 with the greatest anti-precipitation ability. Low precipitation amounts after prolonged tests under large current densities reflect genuine efficacy by our MBPTS. Additionally, a flow-type electrolyzer based on our optimal cathode stably functions at industrially-relevant 500 mA cm-2 for 150 h in natural seawater while unwaveringly sustaining near-100% H2 Faradic efficiency. Note that the estimated price (~1.8 US$/kgH2) is even cheaper than the US Department of Energy's goal price (2 US$/kgH2).

8.
Food Chem ; 447: 139018, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38503067

RESUMO

Developing an accurate, cost-effective, reliable, and stable glucose detection sensor for the food industry poses a significant yet challenging endeavor. Herein, we present a silver nanoparticle-decorated titanium dioxide nanoribbon array on titanium plate (Ag@TiO2/TP) as an efficient electrode for non-enzymatic glucose detection in alkaline environments. Electrochemical evaluations of the Ag@TiO2/TP electrode reveal a broad linear response range (0.001 mM - 4 mM), high sensitivity (19,106 and 4264 µA mM-1 cm-2), rapid response time (6 s), and a notably low detection limit (0.18 µM, S/N = 3). Moreover, its efficacy in measuring glucose in beverage samples shows its practical applicability. The impressive performance and structural benefits of the Ag@TiO2/TP electrode highlight its potential in advancing electrochemical sensors for small molecule detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Nanopartículas Metálicas/química , Técnicas Eletroquímicas , Prata , Glucose/química , Eletrodos
9.
Nat Commun ; 15(1): 3684, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693181

RESUMO

The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.


Assuntos
Aptâmeros de Nucleotídeos , DNA Catalítico , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Humanos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Linhagem Celular Tumoral , DNA Catalítico/metabolismo , DNA Catalítico/química , Animais , Receptor ErbB-2/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Reparo do DNA , Dano ao DNA , Glutationa/metabolismo , Glutationa/química , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química
10.
J Colloid Interface Sci ; 663: 405-412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412726

RESUMO

Electrochemical conversion of nitrite (NO2-) contaminant to green ammonia (NH3) is a promising approach to achieve the nitrogen cycle. The slow kinetics of the complex multi-reaction process remains a serious issue, and there is still a need to design highly effective and selective catalysts. Herein, we report that molybdenum doped cobalt oxide nanoarray on titanium mesh (Mo-Co3O4/TM) acts as a catalyst to facilitate electroreduction of NO2- to NH3. Such a catalyst delivers an extremely high Faradaic efficiency of 96.9 % and a corresponding NH3 yield of 651.5 µmol h-1 cm-2 at -0.5 V with strong stability. Density functional theory calculations reveal that the introduction of Mo can induce the redistribution of electrons around Co atoms and further strengthen the adsorption of NO2-, which is the key to facilitating the catalytic performance. Furthermore, the assembled battery based on Mo-Co3O4/TM suggests its practical application value.

11.
Adv Mater ; 36(16): e2312746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198832

RESUMO

The excessive enrichment of nitrate in the environment can be converted into ammonia (NH3) through electrochemical processes, offering significant implications for modern agriculture and the potential to reduce the burden of the Haber-Bosch (HB) process while achieving environmentally friendly NH3 production. Emerging research on electrocatalytic nitrate reduction (eNitRR) to NH3 has gained considerable momentum in recent years for efficient NH3 synthesis. However, existing reviews on nitrate reduction have primarily focused on limited aspects, often lacking a comprehensive summary of catalysts, reaction systems, reaction mechanisms, and detection methods employed in nitrate reduction. This review aims to provide a timely and comprehensive analysis of the eNitRR field by integrating existing research progress and identifying current challenges. This review offers a comprehensive overview of the research progress achieved using various materials in electrochemical nitrate reduction, elucidates the underlying theoretical mechanism behind eNitRR, and discusses effective strategies based on numerous case studies to enhance the electrochemical reduction from NO3 - to NH3. Finally, this review discusses challenges and development prospects in the eNitRR field with an aim to guide design and development of large-scale sustainable nitrate reduction electrocatalysts.

12.
Adv Mater ; 36(25): e2401221, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563723

RESUMO

Renewable electricity-powered nitrate/carbon dioxide co-reduction reaction toward urea production paves an attractive alternative to industrial urea processes and offers a clean on-site approach to closing the global nitrogen cycle. However, its large-scale implantation is severely impeded by challenging C-N coupling and requires electrocatalysts with high activity/selectivity. Here, cobalt-nanoparticles anchored on carbon nanosheet (Co NPs@C) are proposed as a catalyst electrode to boost yield and Faradaic efficiency (FE) toward urea electrosynthesis with enhanced C-N coupling. Such Co NPs@C renders superb urea-producing activity with a high FE reaching 54.3% and a urea yield of 2217.5 µg h-1 mgcat. -1, much superior to the Co NPs and C nanosheet counterparts, and meanwhile shows strong stability. The Co NPs@C affords rich catalytically active sites, fast reactant diffusion, and sufficient catalytic surfaces-electrolyte contacts with favored charge and ion transfer efficiencies. The theoretical calculations reveal that the high-rate formation of *CO and *NH2 intermediates is crucial for facilitating urea synthesis.

13.
iScience ; 27(1): 108738, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38260173

RESUMO

High-purity hydrogen produced by water electrolysis has become a sustainable energy carrier. Due to the corrosive environments and strong oxidizing working conditions, the main challenge faced by acidic water oxidation is the decrease in the activity and stability of anodic electrocatalysts. To address this issue, efficient strategies have been developed to design electrocatalysts toward acidic OER with excellent intrinsic performance. Electronic structure modification achieved through defect engineering, doping, alloying, atomic arrangement, surface reconstruction, and constructing metal-support interactions provides an effective means to boost OER. Based on introducing OER mechanism commonly present in acidic environments, this review comprehensively summarizes the effective strategies for regulating the electronic structure to boost the activity and stability of catalytic materials. Finally, several promising research directions are discussed to inspire the design and synthesis of high-performance acidic OER electrocatalysts.

14.
iScience ; 27(1): 108736, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269101

RESUMO

Herein, a hierarchical NiTe@NiFe-LDH core-shell array on Ni foam (NiTe@NiFe-LDH/NF) demonstrates its effectiveness for oxygen evolution reaction (OER) in alkaline seawater electrolyte. This NiTe@NiFe-LDH/NF array showcases remarkably low overpotentials of 277 mV and 359 mV for achieving current densities of 100 and 500 mA cm-2, respectively. Also, it shows a low Tafel slope of 68.66 mV dec-1. Notably, the electrocatalyst maintains robust stability over continuous electrolysis for at least 50 h at 100 mA cm-2. The remarkable performance and hierarchical structure advantages of NiTe@NiFe-LDH/NF offer innovative insights for designing efficient seawater oxidation electrocatalysts.

15.
Nat Commun ; 15(1): 6624, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103352

RESUMO

Electrocatalytic H2 production from seawater, recognized as a promising technology utilizing offshore renewables, faces challenges from chloride-induced reactions and corrosion. Here, We introduce a catalytic surface where OH- dominates over Cl- in adsorption and activation, which is crucial for O2 production. Our NiFe-based anode, enhanced by nearby Cr sites, achieves low overpotentials and selective alkaline seawater oxidation. It outperforms the RuO2 counterpart in terms of lifespan in scaled-up stacks, maintaining stability for over 2500 h in three-electrode tests. Ex situ/in situ analyses reveal that Cr(III) sites enrich OH-, while Cl- is repelled by Cr(VI) sites, both of which are well-dispersed and close to NiFe, enhancing charge transfer and overall electrode performance. Such multiple effects fundamentally boost the activity, selectively, and chemical stability of the NiFe-based electrode. This development marks a significant advance in creating durable, noble-metal-free electrodes for alkaline seawater electrolysis, highlighting the importance of well-distributed catalytic sites.

16.
Nat Commun ; 15(1): 6208, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043681

RESUMO

It is vital to explore effective ways for prolonging electrode lifespans under harsh electrolysis conditions, such as high current densities, acid environment, and impure water source. Here we report alternating electrolysis approaches that realize promptly and regularly repair/maintenance and concurrent bubble evolution. Electrode lifespans are improved by co-action of Fe group elemental ions and alkali metal cations, especially a unique Co2+-Na+ combo. A commercial Ni foam sustains ampere-level current densities alternatingly during continuous electrolysis for 93.8 h in an acidic solution, whereas such a Ni foam is completely dissolved in ~2 h for conventional electrolysis conditions. The work not only explores an alternating electrolysis-based system, alkali metal cation-based catalytic systems, and alkali metal cation-based electrodeposition techniques, and beyond, but demonstrates the possibility of prolonged electrolysis by repeated deposition-dissolution processes. With enough adjustable experimental variables, the upper improvement limit in the electrode lifespan would be high.

17.
Adv Mater ; 36(21): e2313086, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38341608

RESUMO

A new strategy that can effectively increase the nitrogen reduction reaction performance of catalysts is proposed and verified by tuning the coordination number of metal atoms. It is found that the intrinsic activity of Mn atoms in the manganese borides (MnBx) increases in tandem with their coordination number with B atoms. Electron-deficient boron atoms are capable of accepting electrons from Mn atoms, which enhances the adsorption of N2 on the Mn catalytic sites (*) and the hydrogenation of N2 to form *NNH intermediates. Furthermore, the increase in coordination number reduces the charge density of Mn atoms at the Fermi level, which facilitates the desorption of ammonia from the catalyst surface. Notably, the MnB4 compound with a Mn coordination number of up to 12 exhibits a high ammonia yield rate (74.9 ± 2.1 µg h-1 mgcat -1) and Faradaic efficiency (38.5 ± 2.7%) at -0.3 V versus reversible hydrogen electrode (RHE) in a 0.1 m Li2SO4 electrolyte, exceeding those reported for other boron-related catalysts.

18.
Front Endocrinol (Lausanne) ; 14: 1325454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292766

RESUMO

Objective: To examine the association between the weight-adjusted waist index (WWI) and the odds of type 2 diabetes mellitus(T2DM)among U.S. adults. Methods: Data from the National Health and Nutrition Examination Survey (NHANES) spanning six years (2007-2018) were utilized, encompassing 31001 eligible participants. Weighted multivariate logistic regression models and smoothed fit curves were employed to assess the association between WWI and the odds of T2DM, as well as dose-response relationships in the overall population and the odds of T2DM in various subgroups. Results: In the fully adjusted continuous model, each one-unit increase in WWI was associated with a 1.14-fold increase in the odds of T2DM within the entire study population (2.14 [1.98,2.31], P < 0.0001). In the fully adjusted categorical model, when using the lowest tertile of WWI (T1) as the reference group, the second tertile (T2) and the third tertile (T3) were associated with a 0.88-fold (1.88 [1.64,2.17], P < 0.0001) and a 2.63-fold (3.63 [3.11,4.23], P < 0.0001) increase in the odds of T2DM. These findings indicated a positive correlation between WWI values and the odds of T2DM, aligning with the results of the smoothed-fitted curves. In the analysis of subgroups, in addition to maintaining consistency with the overall population results, we found interactions between age and hypertension subgroups. Conclusion: In conclusion, WWI was found to be positively associated with the odds of T2DM in U.S. adults.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Adulto , Humanos , Estados Unidos/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Estudos Transversais , Inquéritos Nutricionais , Hipertensão/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA