Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Molecules ; 29(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542971

RESUMO

Understanding the final fate of nanomaterials (NMs) in the liver is crucial for their safer application. As a representative two-dimensional (2D) soft nanomaterial, graphene oxide (GO) has shown to have high potential for applications in the biomedical field, including in biosensing, drug delivery, tissue engineering, therapeutics, etc. GO has been shown to accumulate in the liver after entering the body, and thus, understanding the GO-liver interaction will facilitate the development of safer bio-applications. In this study, the hepatic clearance of two types of PEGylated GOs with different lateral sizes (s-GOs: ~70 nm and l-GOs: ~300 nm) was carefully investigated. We found that GO sheets across the hepatic sinusoidal endothelium, which then may be taken up by the hepatocytes via the Disse space. The hepatocytes may degrade GO into dot-like particles, which may be excreted via the hepatobiliary route. In combination with ICP-MS, LA-ICP-MS, and synchrotron radiation FTIR techniques, we found that more s-GO sheets in the liver were prone to be cleared via hepatobiliary excretion than l-GO sheets. A Raman imaging analysis of ID/IG ratios further indicated that both s-GO and l-GO generated more defects in the liver. The liver microsomes may contribute to GO biotransformation into O-containing functional groups, which plays an important role in GO degradation and excretion. In particular, more small-sized GO sheets in the liver were more likely to be cleared via hepatobiliary excretion than l-GO sheets, and a greater clearance of s-GO will mitigate their hepatotoxicity. These results provide a better understanding of the hepatic clearance of soft NMs, which is important in the safer-by-design of GO.


Assuntos
Grafite , Hepatite , Nanoestruturas , Humanos
2.
J Nanobiotechnology ; 21(1): 51, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765370

RESUMO

BACKGROUND: Renal excretion is one of the major routes of nanomaterial elimination from the body. Many previous studies have found that graphene oxide nanosheets are excreted in bulk through the kidneys. However, how the lateral size affects GO disposition in the kidneys including glomerular filtration, active tubular secretion and tubular reabsorption is still unknown. RESULTS: The thin, two-dimensional graphene oxide nanosheets (GOs) was observed to excrete in urine through the kidneys, but the lateral dimension of GOs affects their renal clearance pathway and renal injury. The s-GOs could be renal excreted via the glomerular filtration, while the l-GOs were predominately excreted via proximal tubular secretion at a much faster renal clearance rate than the s-GOs. For the tubular secretion of l-GOs, the mRNA level of basolateral organic anion transporters Oat1 and Oat2 in the kidney presented dose dependent increase, while no obvious alterations of the efflux transporters such as Mdr1 and Mrp4 mRNA expression levels were observed, suggesting the accumulation of l-GOs. During the GO renal elimination, mostly the high dose of 15 mg/kg s-GO and l-GO treatment showed obvious kidney injuries but at different renal compartment, i.e., the s-GOs induced obvious glomerular changes in podocytes, while the l-GOs induced more obvious tubular injuries including necrosis of renal tubular epithelial cells, loss of brush border, cast formation and tubular dilatation. The specifically tubular injury biomarkers KIM1 and NGAL were shown slight increase with mRNA levels in l-GO administrated mice. CONCLUSIONS: This study shows that the lateral size of GOs affected their interactions with different renal compartments, renal excretion pathways and potential kidney injuries.


Assuntos
Nefropatias , Rim , Camundongos , Animais , Rim/metabolismo , Nefropatias/metabolismo
3.
Environ Geochem Health ; 45(7): 5371-5385, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37133770

RESUMO

Printers can release numerous particles to contaminate indoor environments and pose health risks. Clarifying the exposure level and physicochemical properties of printer-emitted particles (PEPs) will help to evaluate the health risks of printer operator. In our study, the particles concentration in the printing shop was monitored in real time for a long time (12 h/day, total 6 days), and the PEPs were collected to characterize their physicochemical properties including shape, size and compositions. The result showed that the concentration of PEPs is closely related to the printing workload and the highest particle mass concentration of PM10 and PM2.5 was 212.73 µg m-3 and 91.48 µg m-3, respectively. The concentration of PM1 in the printing shop was in the range of 11.88-80.59 µg m-3 for mass value, and 174.83-1348.84 P cm-3 for count value which changed with the printing volume. The particle sizes of PEPs were less than 900 nm, 47.99% of PEPs was less than 200 nm, and 14.21% of the particles were at the nanoscale. PEPs contained 68.92% organic carbon (OC), 5.31% elemental carbon (EC), 3.17% metal elements, and 22.60% other inorganic additives, which contained more OC and metal elements than toners. Total polycyclic aromatic hydrocarbons (PAHs) levels were 18.95 ng/mg in toner and 120.70 ng/mg in PEPs. The carcinogenic risk of PAHs in PEPs was 1.40 × 10-7. These findings suggested future studies should pay more attention to the health effects of printing workers exposed to nanoparticles.


Assuntos
Poluentes Atmosféricos , Exposição Ocupacional , Humanos , Tamanho da Partícula , Impressão , China , Impressão Tridimensional , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental
4.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432058

RESUMO

Renal excretion is expected to be the major route for the elimination of biomedically applied nanoparticles from the body. Hence, understanding the nanomedicine-kidney interaction is crucially required, but it is still far from being understood. Herein, we explored the lateral dimension- (~70 nm and ~300 nm), dose- (1, 5, and 15 mg/kg in vivo and 0.1~250 µg/mL in vitro), and time-dependent (48 h and 7 d in vivo) deposition and injury of PEGylated graphene oxide sheets (GOs) in the kidney after i.v. injection in mice. We specially investigated the cytotoxic effects on three typical kidney cell types with which GO renal excretion is related: human renal glomerular endothelial cells (HRGECs) and human podocytes, and human proximal tubular epithelial cells (HK-2). By using in vivo fluorescence imaging and in situ Raman imaging and spectroscopic analysis, we revealed that GOs could gradually be eliminated from the kidneys, where the glomeruli and renal tubules are their target deposition sites, but only the high dose of GO injection induced obvious renal histological and ultrastructural changes. We showed that the high-dose GO-induced cytotoxicity included a cell viability decrease and cellular apoptosis increase. GO uptake by renal cells triggered cellular membrane damage (intracellular LDH release) and increased levels of oxidative stress (ROS level elevation and a decrease in the balance of the GSH/GSSG ratio) accompanied by a mitochondrial membrane potential decrease and up-regulation of the expression of pro-inflammatory cytokines TNF-α and IL-18, resulting in cellular apoptosis. GO treatments activated Keap1/Nrf2 signaling; however, the antioxidant function of Nrf2 could be inhibited by apoptotic engagement. GO-induced cytotoxicity was demonstrated to be associated with oxidative stress and an inflammation reaction. Generally, the l-GOs presented more pronounced cytotoxicity and more severe cellular injury than s-GOs did, demonstrating lateral size-dependent toxicity to the renal cells. More importantly, GO-induced cytotoxicity was independent of renal cell type. The results suggest that the dosage of GOs in biomedical applications should be considered and that more attention should be paid to the ability of a high dose of GO to cause renal deposition and potential nephrotoxicity.


Assuntos
Células Endoteliais , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células Endoteliais/metabolismo , Rim , Células Epiteliais
5.
Anal Chem ; 92(21): 14339-14345, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32985178

RESUMO

Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an emerging method for the analysis of metal nanoparticles (NPs) in single cells. However, two main obstacles, low analytical throughput and lack of commercial reference materials, need to be overcome. In this work, we demonstrated the principles of a new approach termed "single-cell isotope dilution analysis" (SCIDA) to remove the two obstacles. For a proof of concept, macrophage cells were chosen as a model to study the uptake of silver NPs (AgNPs) at a single-cell level. Single cells exposed to AgNPs were placed in an array by a microfluidic technique; each cell in the array was precisely dispensed with a known picoliter droplet of an enriched isotope solution with a commercial inkjet printer; accurate quantification of AgNPs in single cells was done by using isotope dilution LA-ICP-MS. The average Ag mass of 1100 single cells, 396 ± 219 fg Ag per cell, was in good accord with the average of the population of cells determined by solution ICP-MS analysis. The detection limit was 0.2 fg Ag per cell. The SCIDA approach is expected to be widely applied for the study of cell-NP interactions and biological effects of NPs at the single-cell level.


Assuntos
Espectrometria de Massas , Nanopartículas Metálicas , Prata/química , Prata/metabolismo , Análise de Célula Única/métodos , Animais , Transporte Biológico , Isótopos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Células RAW 264.7
6.
J Nanobiotechnology ; 18(1): 45, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32169073

RESUMO

BACKGROUND: To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer, clearance routes, and potential toxicity of the NMs in the liver and kidney. RESULTS: Here we explored how the surface chemistry of polyethylene glycol (PEG), chitosan (CS), and polyethylenimine (PEI) capped gold nanoparticles (GNPs) governs their sub-organ biodistribution, transfer, and clearance profiles in the liver and kidney after intravenous injection in mice. The PEG-GNPs maintained dispersion properties in vivo, facilitating passage through the liver sinusoidal endothelium and Disse space, and were captured by hepatocytes and eliminated via the hepatobiliary route. While, the agglomeration/aggregation of CS-GNPs and PEI-GNPs in hepatic Kupffer and endothelial cells led to their long-term accumulation, impeding their elimination. The gene microarray analysis shows that the accumulation of CS-GNPs and PEI-GNPs in the liver induced obvious down-regulation of Cyp4a or Cyp2b related genes, suggesting CS-GNP and PEI-GNP treatment impacted metabolic processes, while the PEI-GNP treatment is related with immune responses. CONCLUSIONS: This study demonstrates that manipulation of nanoparticle surface chemistry can help NPs selectively access distinct cell types and elimination pathways, which help to clinical potential of non-biodegradable NPs.


Assuntos
Ouro/metabolismo , Ouro/toxicidade , Rim/metabolismo , Fígado/metabolismo , Nanopartículas Metálicas/toxicidade , Animais , Quitosana/metabolismo , Citosol , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Ouro/sangue , Rim/patologia , Cinética , Fígado/patologia , Masculino , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos ICR , Tamanho da Partícula , Polietilenoglicóis/metabolismo , Polietilenoimina/metabolismo , Ratos , Ratos Wistar , Distribuição Tecidual , Transcriptoma
7.
Anal Bioanal Chem ; 411(18): 4151-4157, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30879112

RESUMO

Chemical composition in fingermarks could provide useful information for forensic studies and applications. Here, we evaluate the feasibility of analysis and imaging of fingermarks via elements by synchrotron radiation X-ray fluorescence (SRXRF) and commercial X-ray fluorescence (XRF). As a proof of concept, we chose four brands of sunscreens to make fingermarks on different substrates, including plastic film, glass, paper, and silicon wafer. We obtained an evident image of fingermarks via zinc and titanium by XRF methods. In addition, the ratios of element concentrations in sunscreen fingermarks were obtained, which were in accordance with the results obtained by acid digestion and ICP-OES analysis. In comparison, commercial XRF offers the most advantages in terms of non-destructive detection, easy accessibility, fast element images, and broad applicability. The possibility to acquire fingermark images simultaneously with element information opens up new avenues for forensic science. Graphical abstract.


Assuntos
Protetores Solares/química , Estudo de Prova de Conceito , Espectrometria por Raios X , Titânio/análise , Zinco/análise
8.
J Nanosci Nanotechnol ; 18(5): 3087-3094, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442807

RESUMO

Amyloid fibrillation has been implicated in many neurodegenerations, dialysis-related amyloidosis, type II diabetes and more than 30 other amyloid-related diseases. Nanomaterials as potential inhibitors of amyloid fibrillation have attracted increasing interests. In the present study, the effects of gold nanorods (AuNRs) and nanoparticles (AuNPs) on amyloid fibrillation were investigated using hen egg white lysozyme (HEWL) as a model system. Our results indicated that AuNRs and AuNPs, especially AuNRs, present significant inhibitory effects on HEWL amyloid fibril formation during all the kinetic processes, from nucleation to elongation and equilibration stages. The stronger adsorption capacity of HEWL on AuNRs surface is the key mechanism of inhibition of HEWL amyloid fibrillation. Furthermore, AuNRs lead to more stable α-helix conformation and hydrophobic microenvironment of aromatic side groups in HEWL molecules, which facilitate the system to form small amorphous aggregates rather than oligomer, profibril or mature fibril.


Assuntos
Amiloide/química , Ouro , Muramidase/metabolismo , Nanopartículas , Nanotubos , Amiloide/metabolismo , Diabetes Mellitus Tipo 2 , Diálise Renal
9.
Anal Bioanal Chem ; 409(5): 1415-1423, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27909780

RESUMO

Cellular heterogeneity is an inherent condition of cell populations, which results from stochastic expression of genes, proteins, and metabolites. The heterogeneity of individual cells can dramatically influence cellular decision-making and cell fate. So far, our knowledge about how the variation of endogenous metals and non-metals in individual eukaryotic cells is limited. In this study, ICP-MS equipped with a high efficiency cell introduction system (HECIS) was developed as a method of single-cell ICP-MS (SC-ICP-MS). The method was applied to the single-cell analysis of Mn, Fe, Co, Cu, Zn, P, and S in human cancer cell lines (HeLa and A549) and normal human bronchial epithelial cell line (16HBE). The analysis showed obvious variation of the masses of Cu, Fe, Zn, and P in individual HeLa cells, and variation of Fe, Zn, and P in individual A549 cells. On the basis of the single-cell data, a multimodal distribution of the elements in the cell population was fitted, which showed marked differences among the various cell lines. Importantly, subpopulations of the elements were found in the cell populations, especially in the HeLa cancer cells. This study demonstrates that SC-ICP-MS is able to unravel the extent of variation of endogenous elements in individual cells, which will help to improve our fundamental understanding of cellular biology and reveal novel insights into human biology and medicine. Graphical abstract The variations of masses and distribution patterns of elements Mn, Fe, Co, Cu, Zn, P, and S in single cells were successfully detected by ICP-MS coupled with a high efficiency cell introduction system (HECIS).


Assuntos
Espectrometria de Massas/métodos , Oligoelementos/análise , Linhagem Celular Tumoral , Humanos
10.
Anal Chem ; 87(5): 2546-9, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25672989

RESUMO

We report for the first time seeing and counting integrin α(IIb)ß3 on a single-cell level. The proposed method is based on the using of the Au cluster probe. With the fluorescent property of Au24 cluster and the specific targeting ability of peptide, our probe can directly visualize integrin α(IIb)ß3 on the membrane of human erythroleukemia cells (HEL) via confocal microscopy. On the basis of the accurate formula of our probe (Au24Peptide8), the number of integrin α(IIb)ß3 can be precisely counted by quantifying the gold content on a single HEL cell via laser ablation inductively coupled plasma mass spectrometry. Our results reveal that the number of integrin α(IIb)ß3 on a single cell varies from 5.75 × 10(-17) to 9.11 × 10(-17) mol, because of the heteroexpression levels of α(IIb)ß3 on individual cells.


Assuntos
Membrana Celular/metabolismo , Ouro/química , Leucemia Eritroblástica Aguda/metabolismo , Fragmentos de Peptídeos/análise , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/análise , Análise de Célula Única/métodos , Plaquetas/metabolismo , Membrana Celular/ultraestrutura , Humanos , Microscopia Confocal , Células Tumorais Cultivadas
11.
Small ; 11(34): 4366-78, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26097125

RESUMO

Single walled carbon nanotubes (SWCNTs) have been shown to be highly effective against a wide range of bacteria. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) infection is a well-known mediator to prolong hospitalization and initiate chronic inflammation, yet the biological effects of SWCNTs on the pathogen-infected enterocytes remain unclear. Herein, it is shown that the low-dose SWCNT treatment attenuates the human enterocyte-like Caco-2 cells from the damage of E. coli and S. aureus infection by suppressing NLRP3 inflammasome activation. The relatively low-dose (1 and 10 µg mL(-1) ) SWCNT treatments reduce the adhesion and invasion of E. coli and S. aureus to Caco-2 cells, increase the cell viability and proliferation, reduce the tight junction permeability, and restitute the integrity of cell surface microvilli structure, meanwhile has low cytotoxicity to the host cells. The low-dose SWCNT treatment further reduces the NLRP3-mediated IL-1ß secretion in the infected cells. The results identify that a low-dose SWCNT treatment serves a protective function for the E. coli- and S. aureus-infected Caco-2 cells by negatively regulating mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation.


Assuntos
Técnicas de Cocultura/métodos , Enterócitos/microbiologia , Enterócitos/patologia , Escherichia coli/patogenicidade , Inflamação/patologia , Nanotubos de Carbono/química , Staphylococcus aureus/patogenicidade , Aderência Bacteriana , Proteínas Adaptadoras de Sinalização CARD , Células CACO-2 , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Forma Celular , Sobrevivência Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Epitélio/patologia , Escherichia coli/ultraestrutura , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Microvilosidades/ultraestrutura , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/ultraestrutura , Superóxidos/metabolismo
12.
Analyst ; 140(2): 523-31, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25407025

RESUMO

Novel single cell techniques are attracting growing interest for clinical applications, because they can elucidate the cellular diversity and heterogeneity instead of the average masked by bulk measurements. Herein, time-resolved ICP-MS for the determination of essential mineral elements in single cells has been developed and is used to analyze the contents and distribution patterns of Fe, Cu, Zn, Mn, P and S in two types of cancer cells (HeLa and A549) and one type of normal cells (16HBE). The results show that there are obvious differences in contents and distribution patterns of the elements among the three types of cells. The mass of Fe, Zn, Cu, Mn, P, and S in individual HeLa cells is significantly higher and span a broader range of values than in the single 16HBE and A549 cells. The contents of Fe, Zn, and Cu follow log-normal distributions, and Mn, P, and S follow Poisson distributions with high λ values in single HeLa cells, indicating a large cell-to-cell variance. Comparatively, the contents of Cu, Zn, P, and S in 16HBE cells show the narrowest distribution range among the three tested cells, demonstrating the homogenous distribution of the elements in the cells. The method of single cell ICP-MS (SC-ICP-MS) provides potential applications for the monitoring of the variation of mineral elements at a single cell level.


Assuntos
Fósforo/análise , Análise de Célula Única/métodos , Espectrofotometria Atômica/métodos , Enxofre/análise , Oligoelementos/análise , Linhagem Celular Tumoral , Células HeLa , Humanos , Espectrometria de Massas/métodos , Neoplasias/química
13.
Anal Bioanal Chem ; 407(9): 2383-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25701412

RESUMO

Cisplatin is a commonly used chemotherapeutic drug in cancer treatment, whereas Gd@C82(OH)22 is a new nanomaterial anti-tumor agent. In this study, we determined intracellular Gd@C82(OH)22 and cisplatin after treatment of Hela and 16HBE cells by single cell inductively coupled plasma-mass spectrometry (SC-ICP-MS), which could provide quantitative information at a single-cell level. The cell digestion method validated the accuracy of the SC-ICP-MS. The concentrations of Gd@C82(OH)22 and cisplatin in cells at different exposure times and doses were studied. The SC-ICP-MS is a promising complement to available methods for single cell analysis and is anticipated to be applied further to biomedical research.


Assuntos
Antineoplásicos/metabolismo , Cisplatino/metabolismo , Gadolínio/metabolismo , Espectrometria de Massas/métodos , Nanoestruturas/química , Neoplasias/metabolismo , Análise de Célula Única/métodos , Antineoplásicos/análise , Linhagem Celular Tumoral , Cisplatino/análise , Gadolínio/análise , Humanos , Neoplasias/química
14.
Anal Chem ; 86(20): 10252-6, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25225851

RESUMO

Single cell analysis has become an important field of research in recent years reflecting the heterogeneity of cellular responses in biological systems. Here, we demonstrate a new method, based on laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), which can quantify in situ gold nanoparticles (Au NPs) in single cells. Dried residues of picoliter droplets ejected by a commercial inkjet printer were used to simulate matrix-matched calibration standards. The gold mass in single cells exposed to 100 nM NIST Au NPs (Reference material 8012, 30 nm) for 4 h showed a log-normal distribution, ranging from 1.7 to 72 fg Au per cell, which approximately corresponds to 9 to 370 Au NPs per cell. The average result from 70 single cells (15 ± 13 fg Au per cell) was in good agreement with the result from an aqua regia digest solution of 1.2 × 10(6) cells (18 ± 1 fg Au per cell). The limit of quantification was 1.7 fg Au. This paper demonstrates the great potential of LA-ICPMS for single cell analysis and the beneficial study of biological responses to metal drugs or NPs at the single cell level.


Assuntos
Técnicas de Química Analítica/métodos , Ouro/análise , Espectrometria de Massas , Nanopartículas Metálicas/análise , Animais , Linhagem Celular , Ouro/química , Terapia a Laser , Nanopartículas Metálicas/química , Camundongos
15.
Nanotechnology ; 25(16): 165101, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24670485

RESUMO

The impact of the gut microbiota on human health is widely perceived as the most exciting advancement in biomedicine. The gut microbiota has been known to play a crucial role in defining states of human health and diseases, and thus becomes a potential new territory for drug targeting. Herein, graphene oxide (GO) interaction with five common human gut bacteria, B. adolescentis, L. acidophilus, E. coli, E. faecalis, and S. aureus, was studied. It was shown that, in bacterial media, GO sheets were able to form effective, anaerobic membrane scaffolds that enhanced the antagonistic activity of B. adolescentis against the pathogens E. coli andS. aureus. Data obtained using bacterial growth measurements, colony counting and 16S rRNA gene sequencing consistently indicated that GO sheets promoted proliferation of gut bacteria, particularly for B. adolescentis. Scanning electron microscopy, atomic force microscopy images, and membrane potential measurements showed that cell membranes maintained their integrity and that no observable variations in cell morphology were induced after interaction with GO sheets, indicating good biocompatibility of GO. These results suggest the possibility of using GO sheets as efficient drug carriers in therapeutic applications to treat diseases related to the gut microbiota.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Meios de Cultura/química , Enterococcus faecalis/fisiologia , Escherichia coli/fisiologia , Grafite , Interações Microbianas , Staphylococcus aureus/fisiologia , Bifidobacterium/classificação , Enterococcus faecalis/genética , Escherichia coli/genética , Humanos , Lactobacillus acidophilus , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Staphylococcus aureus/genética , Estômago/microbiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38686647

RESUMO

Nanocarriers have been researched comprehensively for the development of novel boron-containing agents in boron neutron capture therapy (BNCT). We designed and synthesized a multifunctional mesoporous silica nanoparticle (MSN)-based boron-containing agent. The latter was coated with a lipid bilayer (LB) and decorated with SP94 peptide (SFSIIHTPILPL) on the surface as SP94-LB@BA-MSN. The latter incorporated boric acid (BA) into hydrophobic mesopores, coated with an LB, and modified with SP94 peptide on the LB. SP94-LB@BA-MSN enhanced nano interface tumor-targeting ability but also prevented the premature release of drugs, which is crucial for BNCT because adequate boron content in tumor sites is required. SP94-LB@BA-MSN showed excellent efficacy in the BNCT treatment of HepG-2 cells. In animal studies with tumor-bearing mice, SP94-LB@BA-MSN exhibited a satisfactory accumulation at the tumor site. The boron content reached 40.18 ± 5.41 ppm in the tumor site 4 h after injection, which was 8.12 and 15.51 times higher than those in mice treated with boronated phenylalanine and those treated with BA. For boron, the tumor-to-normal tissue ratio was 4.41 ± 1.13 and the tumor-to-blood ratio was 5.92 ± 0.45. These results indicated that nanoparticles delivered boron to the tumor site effectively while minimizing accumulation in normal tissues. In conclusion, this composite (SP94-LB@BA-MSN) shows great promise as a boron-containing delivery agent for the treatment of hepatocellular carcinoma using BNCT. These findings highlight the potential of MSNs in the field of BNCT.

17.
Small ; 9(16): 2735-46, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23463684

RESUMO

Carbon nanotubes (CNTs) hold promise in manufacturing, environmental, and biomedical applications, as well as food and agricultural industries. Previous observations have shown that CNTs have antimicrobial activity; however, the impact of CNTs to human gut microbes has not been investigated. Here, the antibacterial activity of CNTs against the microbes commonly encountered in the human digestion system--L. acidophilus, B. adolescentis, E. coli, E. faecalis, and S. aureus--are evaluated. The bacteria studied include pathogenic and non-pathogenic, gram-positive and negative, and both sphere and rod strains. In this study, CNTs, including single-walled CNTs (SWCNTs, 1-3 µm), short and long multi-walled CNTs (s-MWCNTs: 0.5-2 µm; l-MWCNTs: >50 µm), and functionalized multi-walled CNTs (hydroxyl- and carboxyl-modification, 0.5-2 µm), all have broad-spectrum antibacterial effects. Notably, CNTs may selectively lyse the walls and membranes of human gut microbes, depending on not only the length and surface functional groups of CNTs, but also the shapes of the bacteria. The mechanism of antibacterial activity is associated with their diameter-dependent piercing and length-dependent wrapping on the lysis of microbial walls and membranes, inducing release of intracellular components DNA and RNA and allowing a loss of bacterial membrane potential, demonstrating complete destruction of bacteria. Thin and rigid SWCNT show more effective wall/membrane piercing on spherical bacteria than MWCNTs. Long MWCNT may wrap around gut bacteria, increasing the area making contact with the bacterial wall. This work suggests that CNTs may be broad-spectrum and efficient antibacterial agents in the gut, and selective application of CNTs could reduce the potential hazard to probiotic bacteria.


Assuntos
Antibacterianos/farmacologia , Nanotubos de Carbono , Antibacterianos/química , Bifidobacterium/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Lactobacillus acidophilus/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Estômago/microbiologia
18.
Anal Chim Acta ; 1254: 341114, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37005024

RESUMO

Single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) has become a powerful technique for the characterization of nanoparticles (NPs). However, the accuracy of the characterization of NPs by SP-ICP-MS is greatly affected by the data acquisition rate and the way of data processing. For SP-ICP-MS analysis, ICP-MS instruments typically apply microsecond to millisecond dwell times (10 µs-10 ms). Considering the duration of one nanoparticle event in the detector is 0.4-0.9 ms, NPs will show different data forms when working with microsecond and millisecond dwell times. In this work, the effects of dwell times from microsecond to millisecond (50 µs, 100 µs, 1 ms and 5 ms) on the data forms in SP-ICP-MS analysis are discussed. The data analysis and data processing for different dwell times is discussed in detail, including the measurement of transport efficiency (TE), the distinction of signal and background, the evaluation of diameter limit of detection (LODd) and the quantification of mass, size and particle number concentration (PNC) of NPs. This work provides data support for the data processing process and aspects to be considered in the characterization of NPs by SP-ICP-MS, which is expected to provide guidance and reference for researchers in SP-ICP-MS analysis.

19.
NanoImpact ; 31: 100469, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37270064

RESUMO

Rapid development of gold nanoparticles (GNPs) in delivering pharmaceutics and therapeutics approaches still linger the concerns of their toxic effects. Nonalcoholic steatohepatitis (NASH) is characterized by excessive lipid accumulation and overt hepatic inflammatory damage, and is the leading cause of chronic liver disease worldwide. This study aimed to assess the potential hepatic effects of GNPs on NASH phenotype and progression in mice. Mice were fed a MCD diet for 8 weeks to elicit NASH and then intravenously injected with PEG-GNPs at a single dose of 1, 5, and 25 mg/kg-bw. After 24 h and 1 week of administration, the levels of plasma ALT and AST, and the number of lipid droplets, the degree of lobular inflammation and the contents of triglycerides and cholesterols in the livers of the NASH mice significantly increased compared with the untreated NASH mice, indicating that the severity of MCD diet-induced NASH-like symptoms in mice increased after PEG-GNP administration. Moreover, the aggravated hepatic steatosis in a manner involving altered expression of the genes related to hepatic de novo lipogenesis, lipolysis, and fatty acid oxidation was observed after PEG-GNP administration. Additionally, the RNA levels of biomarkers of hepatic pro-inflammatory responses, endoplasmic reticulum stress, apoptosis, and autophagy in MCD-fed mice increased compared with the untreated NASH group. Moreover, PEG-GNP-treated NASH mice displayed an increase in MCD diet-induced hepatic fibrosis, revealed by massive deposition of collagen fiber in the liver and increased expression of fibrogenic genes. Collectively, these results suggest that hepatic GNP deposition after PEG-GNP administration increase the severity of MCD-induced NASH phenotype in mice, which is attributable to, in large part, increased steatohepatitic injury and liver fibrosis in mice.


Assuntos
Nanopartículas Metálicas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Ouro , Cirrose Hepática/complicações , Triglicerídeos/metabolismo
20.
Anal Chim Acta ; 1273: 341524, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423661

RESUMO

Isotope dilution (ID) analysis is considered one of the most accurate quantitative methods. However, it has not been widely applied to the quantitative imaging of trace elements in biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), mainly because of difficulties in homogeneously mixing enriched isotopes (the spike) with the sample (e.g., a tissue section). In this study, we present a novel method for the quantitative imaging of trace elements (copper and zinc) in mouse brain sections using ID-LA-ICP-MS. We used an electrospray-based coating device (ECD) to evenly distribute a known amount of the spike (65Cu and 67Zn) on the sections. The optimal conditions for this process involved evenly distributing the enriched isotopes on mouse brain sections mounted on indium tin oxide (ITO) glass slides using the ECD with the 10 mg g-1 ɑ-cyano-4-hydroxycinnamic acid (CHCA) in methanol at 80 °C. The mass of the spiked isotopes and the tissue sections on the ITO slides was calculated by weighing them on an analytical balance. Quantitative images of Cu and Zn in Alzheimer's disease (AD) mouse brain sections were obtained using ID-LA-ICP-MS. These imaging results showed that Cu and Zn concentrations in various brain regions typically ranged from 10 to 25 µg g-1 and 30-80 µg g-1, respectively. But it is worth noting that the hippocampus contained up to 50 µg g-1 of Zn, while the cerebral cortex and hippocampus had Cu contents as high as 150 µg g-1. These results were validated by acid digestion and solution analysis with ICP-MS. The novel ID-LA-ICP-MS method provides an accurate and reliable means for quantitative imaging of biological tissue sections.


Assuntos
Encéfalo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Química Encefálica , Espectrometria de Massas , Cobre/análise , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA