Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 37(1): e23228, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36193742

RESUMO

Acute compartment syndrome (ACS) is a life-threatening orthopedic emergency, which can even result in amputation. Ferroptosis is an iron-dependent form of nonapoptotic cell death. This study investigated the mechanism of ferroptosis in ACS, explored candidate markers, and determined effective treatments. This study identified pathways involved in the development of ACS through gene set enrichment analysis (GSEA), Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA of heme oxygenase 1 (Hmox1). Bioinformatics methods, combined with real-time quantitative polymerase chain reaction, western blot analysis, and iron staining, were applied to determine whether ferroptosis was involved in the progression of ACS and to explore the mechanism of nuclear factor erythroid-2-related factor 2 (Nfe2l2)/Hmox1 in ferroptosis regulation. Optimal drugs for the treatment of ACS were also investigated using Connectivity Map. The ferroptosis pathway was enriched in GSEA, KEGG of DEGs, and GSEA of Hmox1. After ACS, the reactive oxygen species content, tissue iron content, and oxidative stress level increased, whereas glutathione peroxidase 4 protein expression decreased. The skeletal muscle was swollen and necrotized; the number of mitochondrial cristae became fewer or even disappeared, and Nfe2l2/Hmox1 expression increased at the transcriptional and protein levels. Hmox1 was highly expressed in ACS, indicating that Hmox1 is a possible marker for ACS. we could predict 12 potential target drugs for the treatment of ACS. In conclusion, Hmox1 was a potential candidate marker for ACS diagnosis. Ferroptosis was involved in the progression of ACS. It was speculated that ferroptosis is inhibited by the Nfe2l2/Hmox1 signaling pathway.


Assuntos
Síndromes Compartimentais , Ferroptose , Humanos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Transdução de Sinais , Ferro , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
2.
Nanomaterials (Basel) ; 14(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202519

RESUMO

Mechanical ball milling is a prevalent technology for material preparation and also serves as a post-treatment method to modify electrode materials, thus enhancing electrochemical performances. This study explores the microstructure modification of commercial activated carbon through mechanical ball milling, proving its efficacy in increasing sodium-ion energy storage. The evolution of activated carbon's physical and chemical properties during ball milling was systematically examined. It was observed that the quantity of closed pores and the graphitization degree in activated carbon increased with extended ball milling duration. The sodium storage mechanism in activated carbon transitions to an insertion-pore filling process, significantly elevating platform capacity. Additionally, ball-milled activated carbon demonstrates remarkable long-term cycling stability (92% capacity retention over 200 cycles at 200 mA g-1) and rate performance. This research offers a novel approach to developing advanced anode materials for sodium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA