Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Nanobiomed Res ; 1(7): 2000092, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34746928

RESUMO

Electrical microstimulation has shown promise in restoring neural deficits in humans. Electrodes coated with materials like the conducting polymer poly(3,4-ethylenedioxythiophene) doped with acid-functionalized carbon nanotubes (PEDOT/CNTs, or PC) exhibit superior charge injection than traditional metals like platinum. However, the stimulation performance of PC remains to be fully characterized. Advanced imaging techniques and transgenic tools allow for real-time observations of neural activity in vivo. Herein, microelectrodes coated with PC and iridium oxide (IrOx) (a commonly used high-charge-injection material) are implanted in GCaMP6s mice and electrical stimulation is applied while imaging neuronal calcium responses. Results show that PC-coated electrodes stimulate more intense and broader GCaMP responses than IrOx. Two-photon microscopy reveals that PC-coated electrodes activate significantly more neuronal soma and neuropil than IrOx-coated electrodes in constant-voltage stimulation and significantly more neuronal soma in constant-current stimulation. Furthermore, with the same injected charge, both materials activate more spatially confined neural elements with shorter pulses than longer pulses, providing a means to tune stimulation selectivity. Finite element analyses reveal that the PC coating creates a denser and nonuniform electric field, increasing the likelihood of activating nearby neural elements. PC coating can significantly improve energy efficiency for electrical stimulation applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA