Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 603
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(11): e1011789, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37948454

RESUMO

The COVID pandemic fueled by emerging SARS-CoV-2 new variants of concern remains a major global health concern, and the constantly emerging mutations present challenges to current therapeutics. The spike glycoprotein is not only essential for the initial viral entry, but is also responsible for the transmission of SARS-CoV-2 components via syncytia formation. Spike-mediated cell-cell transmission is strongly resistant to extracellular therapeutic and convalescent antibodies via an unknown mechanism. Here, we describe the antibody-mediated spike activation and syncytia formation on cells displaying the viral spike. We found that soluble antibodies against receptor binding motif (RBM) are capable of inducing the proteolytic processing of spike at both the S1/S2 and S2' cleavage sites, hence triggering ACE2-independent cell-cell fusion. Mechanistically, antibody-induced cell-cell fusion requires the shedding of S1 and exposure of the fusion peptide at the cell surface. By inhibiting S1/S2 proteolysis, we demonstrated that cell-cell fusion mediated by spike can be re-sensitized towards antibody neutralization in vitro. Lastly, we showed that cytopathic effect mediated by authentic SARS-CoV-2 infection remain unaffected by the addition of extracellular neutralization antibodies. Hence, these results unveil a novel mode of antibody evasion and provide insights for antibody selection and drug design strategies targeting the SARS-CoV-2 infected cells.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos , Membrana Celular , Glicoproteína da Espícula de Coronavírus/genética
2.
Nucleic Acids Res ; 51(3): 1087-1102, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36651270

RESUMO

Reactive oxygen species (ROS) are implicated in epithelial cell-state transition and deposition of extracellular matrix upon airway injury. Of the many cellular targets of ROS, oxidative DNA modification is a major driving signal. However, the role of oxidative DNA damage in modulation profibrotic processes has not been fully delineated. Herein, we report that oxidative DNA base lesions, 8-oxoG, complexed with 8-oxoguanine DNA glycosylase 1 (OGG1) functions as a pioneer factor, contributing to transcriptional reprogramming within airway epithelial cells. We show that TGFß1-induced ROS increased 8-oxoG levels in open chromatin, dynamically reconfigure the chromatin state. OGG1 complexed with 8-oxoG recruits transcription factors, including phosphorylated SMAD3, to pro-fibrotic gene promoters thereby facilitating gene activation. Moreover, 8-oxoG levels are elevated in lungs of mice subjected to TGFß1-induced injury. Pharmacologic targeting of OGG1 with the selective small molecule inhibitor of 8-oxoG binding, TH5487, abrogates fibrotic gene expression and remodeling in this model. Collectively, our study implicates that 8-oxoG substrate-specific binding by OGG1 is a central modulator of transcriptional regulation in response to tissue repair.


Assuntos
DNA Glicosilases , Guanina , Lesão Pulmonar , Animais , Camundongos , Cromatina , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional , Guanina/análogos & derivados
3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34930824

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in tremendous loss worldwide. Although viral spike (S) protein binding of angiotensin-converting enzyme 2 (ACE2) has been established, the functional consequences of the initial receptor binding and the stepwise fusion process are not clear. By utilizing a cell-cell fusion system, in complement with a pseudoviral infection model, we found that the spike engagement of ACE2 primed the generation of S2' fragments in target cells, a key proteolytic event coupled with spike-mediated membrane fusion. Mutagenesis of an S2' cleavage site at the arginine (R) 815, but not an S2 cleavage site at arginine 685, was sufficient to prevent subsequent syncytia formation and infection in a variety of cell lines and primary cells isolated from human ACE2 knock-in mice. The requirement for S2' cleavage at the R815 site was also broadly shared by other SARS-CoV-2 spike variants, such as the Alpha, Beta, and Delta variants of concern. Thus, our study highlights an essential role for host receptor engagement and the key residue of spike for proteolytic activation, and uncovers a targetable mechanism for host cell infection by SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Fusão de Membrana , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , COVID-19/virologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Ligação Proteica , Proteólise , Internalização do Vírus
4.
J Cell Mol Med ; 28(12): e18467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898581

RESUMO

TNKS is a new target for the treatment of lung adenocarcinoma, the synergistic effects of the TCM compound Xiaoyan decoction and the TNKS inhibitor E7449 in the intervention on TNKS were investigated, and the possible underlying mechanisms involved were clarified. Immunohistochemistry was used to analyse TNKS expression in tumour tissues. The impact of targeting TNKS on cell growth, invasion, apoptosis, key genes and signalling pathways was investigated in tumour cells by Western blotting, rescue experiments, colony formation assays, flow cytometry and label-free experiments. Tumour xenografts with A549 cells were then transplanted for in vivo study. We found that TNKS high expression was closely related to the advanced tumour stage and tumour size in lung adenocarcinom. After TNKS was knocked down in vitro, the growth, proliferation, migration and invasion were markedly reduced in A549 and H1975 cells. We subsequently applied the Xiaoyan decoction and TNKS inhibitors to intervene in lung adenocarcinoma. Xiaoyan decoction and E7449 suppressed TNKS expression and inhibited adenocarcinoma cell proliferation, migration, invasion and apoptosis in vitro. Proteomic analysis revealed that E7449 treatment may be most closely associated with the classic Wnt/ß-catenin pathway, whereas Xiaoyan decoction treatment may be related to the WNT/PLAN pathway. Xenograft studies confirmed that E7449 or Xiaoyan decoction inhibited lung tumour growth in vivo and attenuated the Wnt signalling pathway in adenocarcinoma. These findings suggest that TNKS is a novel therapeutic target. TCM preparations and small molecule inhibitors are expected to constitute an effective combination strategy.


Assuntos
Adenocarcinoma de Pulmão , Apoptose , Movimento Celular , Proliferação de Células , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Proliferação de Células/efeitos dos fármacos , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Células A549 , Camundongos Nus , Masculino , Feminino , Proteômica/métodos , Camundongos Endogâmicos BALB C
5.
J Cell Mol Med ; 28(11): e18462, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847478

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumour in children and young adults. Account for 80% of all OS cases, conventional OS are characterized by the presence of osteoblastic, chondroblastic and fibroblastic cell types. Despite this heterogeneity, therapeutic treatment and prognosis of OS are essentially the same for all OS subtypes. Here, we report that DEC2, a transcriptional repressor, is expressed at higher levels in chondroblastic OS compared with osteoblastic OS. This difference suggests that DEC2 is disproportionately involved in the progression of chondroblastic OS, and thus, DEC2 may represent a possible molecular target for treating this type of OS. In the human chondroblastic-like OS cell line MNNG/HOS, we found that overexpression of DEC2 affects the proliferation of the cells by activating the VEGFC/VEGFR2 signalling pathway. Enhanced expression of DEC2 increased VEGFR2 expression, as well as increased the phosphorylation levels at sites Y951 and Y1175 of VEGFR2. On the one hand, activation of VEGFR2Y1175 enhanced cell proliferation through VEGFR2Y1175-PLCγ1-PKC-SPHK-MEK-ERK signalling. On the other hand, activation of VEGFR2Y951 decreased mitochondria-dependent apoptosis rate through VEGFR2Y951-VARP-PI3K-AKT signalling. Activation of these two signalling pathways resulted in enhanced progression of chondroblastic OS. In conclusion, DEC2 plays a pivotal role in cell proliferation and apoptosis-resistance in chondroblastic OS via the VEGFC/VEGFR2 signalling pathway. These findings lay the groundwork for developing focused treatments that target specific types of OS.


Assuntos
Neoplasias Ósseas , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Osteossarcoma , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Linhagem Celular Tumoral , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Animais , Apoptose/genética , Fosforilação
6.
J Biol Chem ; 299(8): 105028, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423306

RESUMO

As part of the antiviral response, cells activate the expressions of type I interferons (IFNs) and proinflammatory mediators to control viral spreading. Viral infections can impact DNA integrity; however, how DNA damage repair coordinates antiviral response remains elusive. Here we report Nei-like DNA glycosylase 2 (NEIL2), a transcription-coupled DNA repair protein, actively recognizes the oxidative DNA substrates induced by respiratory syncytial virus (RSV) infection to set the threshold of IFN-ß expression. Our results show that NEIL2 antagonizes nuclear factor κB (NF-κB) acting on the IFN-ß promoter early after infection, thus limiting gene expression amplified by type I IFNs. Mice lacking Neil2 are far more susceptible to RSV-induced illness with an exuberant expression of proinflammatory genes and tissue damage, and the administration of NEIL2 protein into the airway corrected these defects. These results suggest a safeguarding function of NEIL2 in controlling IFN-ß levels against RSV infection. Due to the short- and long-term side effects of type I IFNs applied in antiviral therapy, NEIL2 may provide an alternative not only for ensuring genome fidelity but also for controlling immune responses.


Assuntos
DNA Glicosilases , Interferon beta , Infecções por Vírus Respiratório Sincicial , Vírus Sinciciais Respiratórios , Animais , Camundongos , DNA , DNA Glicosilases/genética , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Interferon beta/genética , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/imunologia
7.
J Biol Chem ; 299(11): 105308, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778730

RESUMO

Nuclear factor kappa B (NF-κB) activity is regulated by various posttranslational modifications, of which Ser276 phosphorylation of RelA/p65 is particularly impacted by reactive oxygen species (ROS). This modification is responsible for selective upregulation of a subset of NF-κB targets; however, the precise mechanism remains elusive. ROS have the ability to modify cellular molecules including DNA. One of the most common oxidation products is 8-oxo-7,8-dihydroguanine (8-oxoGua), which is repaired by the 8-oxoguanine DNA glycosylase1 (OGG1)-initiated base excision repair pathway. Recently, a new function of OGG1 has been uncovered. OGG1 binds to 8-oxoGua, facilitating the occupancy of NF-κB at promoters and enhancing transcription of pro-inflammatory cytokines and chemokines. In the present study, we demonstrated that an interaction between DNA-bound OGG1 and mitogen-and stress-activated kinase 1 is crucial for RelA/p65 Ser276 phosphorylation. ROS scavenging or OGG1 depletion/inhibition hindered the interaction between mitogen-and stress-activated kinase 1 and RelA/p65, thereby decreasing the level of phospho-Ser276 and leading to significantly lowered expression of ROS-responsive cytokine/chemokine genes, but not that of Nfkbis. Blockade of OGG1 binding to DNA also prevented promoter recruitment of RelA/p65, Pol II, and p-RNAP II in a gene-specific manner. Collectively, the data presented offer new insights into how ROS signaling dictates NF-κB phosphorylation codes and how the promoter-situated substrate-bound OGG1 is exploited by aerobic mammalian cells for timely transcriptional activation of ROS-responsive genes.


Assuntos
DNA Glicosilases , NF-kappa B , Animais , DNA/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Mamíferos/metabolismo , Mitógenos , NF-kappa B/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Humanos , Camundongos , Linhagem Celular , Camundongos Knockout
8.
BMC Plant Biol ; 24(1): 152, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418954

RESUMO

BACKGROUND: Due to being rooted in the ground, maize (Zea mays L.) is unable to actively escape the attacks of herbivorous insects such as the Asian corn borer (Ostrinia furnacalis). In contrast to the passive damage, plants have evolved defense mechanisms to protect themselves from herbivores. Salicylic acid, a widely present endogenous hormone in plants, has been found to play an important role in inducing plant resistance to insects. In this study, we screened and identified the insect resistance gene SPI, which is simultaneously induced by SA and O. furnacalis feeding, through preliminary transcriptome data analysis. The functional validation of SPI was carried out using bioinformatics, RT-qPCR, and heterologous expression protein feeding assays. RESULTS: Both SA and O. furnacalis treatment increased the expression abundance of SA-synthesis pathway genes and SPI in three maize strains, and the upregulation of SPI was observed strongly at 6 hours post-treatment. The expression of SPI showed a temporal relationship with SA pathway genes, indicating that SPI is a downstream defense gene regulated by SA. Protein feeding assays using two different expression vectors demonstrated that the variation in SPI protein activity among different strains is mainly due to protein modifications. CONCLUSIONS: Our research results indicate that SPI, as a downstream defense gene regulated by SA, is induced by SA and participates in maize's insect resistance. The differential expression levels of SPI gene and protein modifications among different maize strains are one of the reasons for the variation in insect resistance. This study provides new insights into ecological pest control in maize and valuable insights into plant responses to SA-induced insect resistance.


Assuntos
Mariposas , Zea mays , Animais , Zea mays/genética , Zea mays/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Mariposas/genética , Insetos , Transcriptoma
9.
Ann Surg Oncol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814549

RESUMO

BACKGROUND: The mechanism underlying the formation of gastric tumor deposits (TDs) is unclear. We aimed to explore the risk factors for the formation and prognostic value of TDs. METHODS: This retrospective analysis included 781 locally advanced gastric cancer (LAGC) patients from four medical institutions in China, from June 2014 to June 2018. The risk factors for TD formation and prognostic value were determined through univariate and multivariate analyses. RESULTS: Univariate analysis revealed that TD positivity was closely related to tumor diameter, Borrmann classification, differentiation degree, pT stage, pN stage, pTNM stage, and nerve and vascular invasion (p < 0.05). Multivariate logistic regression revealed that tumor diameter ≥ 5 cm (odds ratio [OR] 1.836, 95% confidence interval [CI] 1.165-2.894, p = 0.009) and vascular invasion (OR 2.152, 95% CI 1.349-3.433, p = 0.001) were independent risk factors for TD positivity. Multivariate Cox analysis revealed that TD positivity (OR 1.533, 95% CI 1.101-2.134, p = 0.011), tumor diameter ≥ 5 cm (OR 1.831, 95% CI 1.319-2.541, p < 0.001), pT4a stage (OR 1.652, 95% CI 1.144-2.386, p = 0.007), and vascular invasion (OR 1.458, 95% CI 1.059-2.008, p = 0.021) were independent risk factors for GC prognosis. The 5-year overall and disease-free survival of the TD-positive group showed significant effects among patients in the pT4a and pN3b stages (p < 0.05). CONCLUSIONS: TDs are closely related to tumor diameter and vascular invasion in LAGC patients, and TD positivity is an independent prognostic factor for LAGC patients, especially those at pT4a and pN3b stages.

10.
Phys Rev Lett ; 132(4): 044002, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335359

RESUMO

Room-temperature ionic liquids (RTILs) are intriguing fluids that have drawn much attention in applications ranging from tribology and catalysis to energy storage. With strong electrostatic interaction between ions, their interfacial behaviors can be modulated by controlling energetics of the electrified interface. In this work, we report atomic-force-microscope measurements of contact angle hysteresis (CAH) of a circular contact line formed on a micron-sized fiber, which is coated with a thin layer of conductive film and intersects an RTIL-air interface. The measured CAH shows a distinct change by increasing the voltage U applied on the fiber surface. Molecular dynamics simulations were performed to illustrate variations of the solidlike layer in the RTIL adsorbed at the electrified interface. The integrated experiments and computations demonstrate a new mechanism to manipulate the CAH by rearrangement of interfacial layers of RTILs induced by the surface energetics.

11.
Mol Pharm ; 21(4): 1677-1690, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38478716

RESUMO

Chronic periodontitis is a chronic, progressive, and destructive disease. Especially, the large accumulation of advanced glycation end products (AGEs) in a diseased body will aggravate the periodontal tissue damage, and AGEs induce M1 macrophages. In this project, the novel nanodrugs, glucose-PEG-PLGA@MCC950 (GLU@MCC), are designed to achieve active targeting with the help of glucose transporter 1 (GLUT1) which is highly expressed in M1 macrophages induced by AGEs. Then, the nanodrugs release MCC950, which is a kind of NLRP3 inhibitor. These nanodrugs not only can improve the water solubility of MCC950 but also exhibit superior characteristics, such as small size, stability, innocuity, etc. In vivo experiments showed that GLU@MCC could reduce periodontal tissue damage and inhibit cell apoptosis in periodontitis model mice. In vitro experiments verified that its mechanism of action might be closely related to the inhibition of the NLRP3 inflammatory factor in M1 macrophages. GLU@MCC could effectively reduce the damage to H400 cells caused by AGEs, decrease the expression of NLRP3, and also obviously reduce the M1-type macrophage pro-inflammatory factors such as IL-18, IL-1ß, caspase-1, and TNF-α. Meanwhile, the expression of anti-inflammatory factor Arg-1 in the M2 macrophage was increased. In brief, GLU@MCC would inhibit the expression of inflammatory factor NLRP3 and exert antiperiodontal tissue damage in chronic periodontitis via GLUT1 in the M1 macrophage as the gating target. This study provides a novel nanodrug for chronic periodontitis treatment.


Assuntos
Periodontite Crônica , Nanopartículas , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Periodontite Crônica/tratamento farmacológico , Periodontite Crônica/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Macrófagos
12.
J Periodontal Res ; 59(1): 128-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947055

RESUMO

OBJECTIVE: Our study was designed to explore the role of IL-37 in M1/M2 macrophage polarization imbalance in the pathogenesis of periodontitis. BACKGROUND: Periodontitis is a chronic progressive inflammatory disease featured by gingival inflammation and alveolar bone resorption. Recent research has revealed that regulating macrophage polarization is a viable method to ameliorate periodontal inflammation. IL-37 is an anti-inflammatory cytokine, which has been reported to inhibit innate and adaptive immunity. METHODS: For in vitro experiment, mouse macrophage RAW264.7 cells were pretreated with 0.1 ng/mL recombinant human IL-37. M1 and M2 polarizations of RAW264.7 cells were induced by 100 ng/mL LPS and 20 ng/mL IL-4, respectively. The expression of M1 (iNOS, TNF-α, and IL-6) and M2 (CD206, Arg1, and IL-10) phenotype markers in RAW264.7 cells was detected by RT-qPCR, western blotting, and immunofluorescence staining. For in vivo experiment, experimental periodontitis mouse models were established by sterile silk ligation (5-0) around the bilateral maxillary second molar of mice for 1 week. H&E staining of the maxillary alveolar bone was used to show the resorption of root cementum and dentin. Alveolar bone loss in mouse models was evaluated through micro-CT analysis. The expression of iNOS and CD206 in gingival tissues was assessed by immunohistochemistry staining. NLRP3 inflammasome activation was confirmed by western blotting. RESULTS: IL-37 pretreatment reduced iNOS, TNF-α, and IL-6 expression in LPS-treated RAW264.7 cells but increased CD206, Arg1, and IL-10 in IL-4-treated RAW264.7 cells. LPS-induced upregulation in NLRP3, GSDMD, cleaved-IL-1ß, and cleaved-caspase-1 expression was antagonized by IL-37 treatment. In addition, IL-37 administration ameliorated the resorption of root cementum and dentin in periodontitis mouse models. IL-37 prominently decreased iNOS+ cell population but increased CD206+ cell population in gingival tissues of periodontitis mice. The enhancement in NLRP3, GSDMD, cleaved-IL-1ß, and cleaved-caspase-1 expression in the gingival tissues of periodontitis mice was offset by IL-37 administration. CONCLUSION: IL-37 prevents the progression of periodontitis by suppressing NLRP3 inflammasome activation and mediating M1/M2 macrophage polarization.


Assuntos
Interleucina-10 , Periodontite , Camundongos , Humanos , Animais , Interleucina-10/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Interleucina-4 , Interleucina-6/metabolismo , Macrófagos/metabolismo , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Inflamação/patologia , Caspase 1/metabolismo
13.
Mol Cell ; 63(1): 60-71, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27320198

RESUMO

Despite its eponymous association with the heat shock response, yeast heat shock factor 1 (Hsf1) is essential even at low temperatures. Here we show that engineered nuclear export of Hsf1 results in cytotoxicity associated with massive protein aggregation. Genome-wide analysis revealed that Hsf1 nuclear export immediately decreased basal transcription and mRNA expression of 18 genes, which predominately encode chaperones. Strikingly, rescuing basal expression of Hsp70 and Hsp90 chaperones enabled robust cell growth in the complete absence of Hsf1. With the exception of chaperone gene induction, the vast majority of the heat shock response was Hsf1 independent. By comparative analysis of mammalian cell lines, we found that only heat shock-induced but not basal expression of chaperones is dependent on the mammalian Hsf1 homolog (HSF1). Our work reveals that yeast chaperone gene expression is an essential housekeeping mechanism and provides a roadmap for defining the function of HSF1 as a driver of oncogenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Homeostase , Camundongos da Linhagem 129 , Camundongos Endogâmicos CBA , Agregados Proteicos , Mapas de Interação de Proteínas , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Fatores de Transcrição/genética , Transfecção
14.
BMC Urol ; 24(1): 29, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310213

RESUMO

OBJECTIVE: To compare the outcomes of patients undergoing Retroperitoneal laparoscopic Radical nephrectomy (RLRN) and Transperitoneal laparoscopic Radical nephrectomy (TLRN). METHODS: A total of 120 patients with localized renal cell carcinoma were randomized into either RLRN or TLRN group. Mainly by comparing the patient perioperative related data, surgical specimen integrity, pathological results and tumor results. RESULTS: Each group comprised 60 patients. The two group were equivalent in terms of perioperative and pathological outcomes. The mean integrity score was significantly lower in the RLRN group than TLRN group. With a median follow-up of 36.4 months after the operation, Kaplan-Meier survival analysis showed no significant difference between RLRN and TLRN in overall survival (89.8% vs. 88.5%; P = 0.898), recurrence-free survival (77.9% vs. 87.7%; P = 0.180), and cancer-specific survival (91.4% vs. 98.3%; P = 0.153). In clinical T2 subgroup, the recurrence rate and recurrence-free survival in the RLRN group was significantly worse than that in the TLRN group (43.2% vs. 76.7%, P = 0.046). Univariate and multivariate COX regression analysis showed that RLRN (HR: 3.35; 95%CI: 1.12-10.03; P = 0.030), male (HR: 4.01; 95%CI: 1.07-14.99; P = 0.039) and tumor size (HR: 1.23; 95%CI: 1.01-1.51; P = 0.042) were independent risk factor for recurrence-free survival. CONCLUSIONS: Our study showed that although RLRN versus TLRN had roughly similar efficacy, TLRN outperformed RLRN in terms of surgical specimen integrity. TLRN was also significantly better than RLRN in controlling tumor recurrence for clinical T2 and above cases. TRIAL REGISTRATION: Chinese Clinical Trial Registry ( https://www.chictr.org.cn/showproj.html?proj=24400 ), identifier: ChiCTR1800014431, date: 13/01/2018.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Laparoscopia , Humanos , Masculino , Neoplasias Renais/patologia , Resultado do Tratamento , Complicações Pós-Operatórias/etiologia , Recidiva Local de Neoplasia/cirurgia , Nefrectomia/métodos , Carcinoma de Células Renais/patologia , Laparoscopia/métodos , Estudos Retrospectivos
15.
Aust Crit Care ; 37(4): 530-538, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38326188

RESUMO

BACKGROUND: Intensive care nurses experience many difficulties in caring for patients with delirium. Thus, it is valuable to conduct in-depth research on the factors that influence the difficulties faced by intensive care nurses in caring for those with delirium as doing so can result in tangible improvements in patient outcomes. OBJECTIVES: The objective of this study was to explore the difficulties faced by intensive care nurses in caring for patients with delirium in light of the demographic, clinical, and professional and management characteristics of nurses. METHODS: A cross-sectional study involving 360 intensive care nurses from eight general hospitals in Taizhou, Zhejiang Province, China. The participants completed questionnaires assessing the level of difficulty they faced in caring for patients with delirium and their level of delirium-related knowledge. RESULTS: The highest overall mean scores on the difficulty scale subscales were observed for ensuring safety (2.92 ± 0.30), dealing with stress and distress (2.80 ± 0.37), and lack of resources (2.85 ± 0.41). The main factors influencing nurses' difficulty in caring for these patients were title, status as a critical care specialist nurse, training regarding delirium, a standardised delirium management process, the knowledge level regarding delirium, the total number of years working in the intensive care unit, and work communication ability. Likewise, most of these characteristics made it difficult for the nurses to use delirium screening tools. CONCLUSIONS: This study provides insights into factors influencing the difficulties faced by intensive care nurses in caring for patients with delirium and in using delirium screening tools. Our findings suggested that nursing managers could develop targeted improvement strategies and provide more resources to support nurses, thereby improving the quality of delirium care and patient outcomes by using the results from this study. These findings can also provide evidence to support intervention studies in the future.


Assuntos
Enfermagem de Cuidados Críticos , Delírio , Humanos , Delírio/enfermagem , Estudos Transversais , Masculino , Feminino , China , Adulto , Inquéritos e Questionários , Recursos Humanos de Enfermagem Hospitalar/psicologia , Pessoa de Meia-Idade , Unidades de Terapia Intensiva
16.
Phys Rev Lett ; 130(10): 103602, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962029

RESUMO

In a Hermitian system, bound states must have quantized energies, whereas free states can form a continuum. We demonstrate how this principle fails for non-Hermitian systems, by analyzing non-Hermitian continuous Hamiltonians with an imaginary momentum and Landau-type vector potential. The eigenstates, which we call "continuum Landau modes" (CLMs), have Gaussian spatial envelopes and form a continuum filling the complex energy plane. We present experimentally realizable 1D and 2D lattice models that host CLMs; the lattice eigenstates are localized and have other features matching the continuous model. One of these lattices can serve as a rainbow trap, whereby the response to an excitation is concentrated at a position proportional to the frequency. Another lattice can act a wave funnel, concentrating an input excitation onto a boundary over a wide frequency bandwidth. Unlike recent funneling schemes based on the non-Hermitian skin effect, this requires a simple lattice design with reciprocal couplings.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37991600

RESUMO

BACKGROUND: Myocardial infarction remains a disease with high morbidity and death rate among cardiovascular diseases. Macrophages are abundant immune cells in the heart. Under different stimulatory factors, macrophages can differentiate into different phenotypes and play a dual pro-inflammatory and anti-inflammatory role. Therefore, a potential strategy for the treatment of myocardial infarction is to regulate the energy metabolism of macrophages and thereby regulate the polarization of macrophages. Tan IIA is an effective liposolubility component extracted from the root of Salvia miltiorrhiza and plays an important role in the treatment of cardiovascular diseases. On this basis, this study proposed whether Tan IIA could affect phenotype changes by regulating energy metabolism of macrophages, and thus exert its potential in the treatment of MI. METHODS: Establishing a myocardial infarction model, Tan IIA was given for 3 days and 7 days for intervention. Cardiac function was detected by echocardiography, and cardiac pathological sections of each group were stained with HE and Masson to observe the inflammatory cell infiltration and fibrosis area after administration. The expression and secretion of inflammatory factors in heart tissue and serum of each group, as well as the proportion of macrophages at the myocardial infarction site, were detected using RT-PCR, ELISA, and immunofluorescence. The mitochondrial function of macrophages was evaluated using JC-1, calcium ion concentration detection, reactive oxygen species detection, and mitochondrial electron microscopic analysis. Mechanically, single-cell transcriptome data mining, cell transcriptome sequencing, and molecular docking technology were used to anchor the target of Tan IIA and enrich the pathways to explore the mechanism of Tan IIA regulating macrophage energy metabolism and phenotype. The target of Tan IIA was further determined by gene knockdown and overexpression assay. RESULTS: The intervention of Tan IIA can improve the cardiac function, inflammatory cell infiltration and fibrosis after MI, reduce the expression of inflammatory factors in the heart, enhance the secretion of anti-inflammatory factors, increase the proportion of M2-type macrophages, reduce the proportion of M1-type macrophages, and promote tissue repair, suggesting that Tan IIA has pharmacological effects in the treatment of MI. In terms of mechanism, RNA-seq results suggest that the phenotype of macrophages is strongly correlated with energy metabolism, and Tan IIA can regulate the PGK1-PDHK1 signaling pathway, change the energy metabolism mode of macrophages, and then affect its phenotype. CONCLUSION: Tan IIA regulates the energy metabolism of macrophages and changes its phenotype through the PGK1-PDHK1 signaling pathway, thus playing a role in improving MI.

18.
BMC Anesthesiol ; 23(1): 360, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932674

RESUMO

BACKGROUND: Respiratory variation in the internal jugular vein (IJVV) has not shown promising results in predicting volume responsiveness in ventilated patients with low tidal volume (Vt) in prone position. We aimed to determine whether the baseline respiratory variation in the IJVV value measured by ultrasound might predict fluid responsiveness in patients with adolescent idiopathic scoliosis (AIS) undergoing posterior spinal fusion (PSF) with low Vt. METHODS: According to the fluid responsiveness results, the included patients were divided into two groups: those who responded to volume expansion, denoted the responder group, and those who did not respond, denoted the non-responder group. The primary outcome was determination of the value of baseline IJVV in predicting fluid responsiveness (≥15% increases in stroke volume index (SVI) after 7 ml·kg-1 colloid administration) in patients with AIS undergoing PSF during low Vt ventilation. Secondary outcomes were estimation of the diagnostic performance of pulse pressure variation (PPV), stroke volume variation (SVV), and the combination of IJVV and PPV in predicting fluid responsiveness in this surgical setting. The ability of each parameter to predict fluid responsiveness was assessed using a receiver operating characteristic curve. RESULTS: Fifty-six patients were included, 36 (64.29%) of whom were deemed fluid responsive. No significant difference in baseline IJVV was found between responders and non-responders (25.89% vs. 23.66%, p = 0.73), and no correlation was detected between baseline IJVV and the increase in SVI after volume expansion (r = 0.14, p = 0.40). A baseline IJVV greater than 32.00%, SVV greater than 14.30%, PPV greater than 11.00%, and a combination of IJVV and PPV greater than 64.00% had utility in identifying fluid responsiveness, with a sensitivity of 33.33%, 77.78%, 55.56%, and 55.56%, respectively, and a specificity of 80.00%, 50.00%, 65.00%, and 65.00%, respectively. The area under the receiver operating characteristic curve for the baseline values of IJVV, SVV, PPV, and the combination of IJVV and PPV was 0.52 (95% CI, 0.38-0.65, p=0.83), 0.54 (95% CI, 0.40-0.67, p=0.67), 0.58 (95% CI, 0.45-0.71, p=0.31), and 0.57 (95% CI, 0.43-0.71, p=0.37), respectively. CONCLUSIONS: Ultrasonic-derived IJVV lacked accuracy in predicting fluid responsiveness in patients with AIS undergoing PSF during low Vt ventilation. In addition, the baseline values of PPV, SVV, and the combination of IJVV and PPV did not predict fluid responsiveness in this surgical setting. TRAIL REGISTRATION: This trial was registered at www.chictr.org (ChiCTR2200064947) on 24/10/2022. All data were collected through chart review.


Assuntos
Cifose , Escoliose , Adolescente , Humanos , Pressão Sanguínea , Hidratação/métodos , Hemodinâmica , Veias Jugulares , Decúbito Ventral , Estudos Prospectivos , Respiração Artificial/métodos , Curva ROC , Volume Sistólico
19.
Plant Dis ; 107(2): 422-430, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35881872

RESUMO

Fusarium head blight (FHB) is a destructive wheat disease worldwide and significantly affects grain yield and quality in wheat. To understand the genetic basis underlying type II FHB resistance in two elite wheat cultivars-Yangmai 4 (YM4) and Yangmai 5 (YM5)-quantitative trait loci (QTL) mapping was conducted in two recombinant inbred line (RIL) populations derived from the crosses of YM4 and YM5 with susceptible cultivar Yanzhan 1 (YZ1), respectively. A survey with markers linked to Fhb1, Fhb2, Fhb4, and Fhb5 in landrace Wangshuibai indicated the nonexistence of these known FHB resistance genes or QTL in YM4, YM5, and YZ1. One overlapped resistance QTL was identified in both RIL populations (namely, QFhb.Y4.2D/QFhb.Y5.2D) with a large effect on FHB resistance. One novel resistance QTL (QFhb.Y4.5A) mapped on chromosome 5A was detected only in the YM4/YZ1 population. The resistance alleles of both QFhb.Y4.2D/QFhb.Y5.2D and QFhb.Y4.5A did not increase the plant height and did not significantly affect the heading date and flowering date. Kompetitive allele-specific PCR markers for QFhb.Y4.2D/QFhb.Y5.2D and QFhb.Y4.5A had been developed to verify in an additional set of 244 geographically diverse cultivars or lines. Pyramiding of the two resistance alleles decreased the percentage of symptomatic spikelets by 51.77% relative to the cultivars or lines without these two resistance alleles. QFhb.Y4.2D/QFhb.Y5.2D and QFhb.Y4.5A were shown to be useful alternatives in FHB resistance breeding programs. The results will facilitate marker-assisted selection for introgression of the favorable alleles for improving FHB resistance in breeding programs.


Assuntos
Fusarium , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Triticum/genética , Fusarium/genética , Doenças das Plantas/genética , Melhoramento Vegetal
20.
Molecules ; 28(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375399

RESUMO

Imidazole-based compounds are a series of heterocyclic compounds that exhibit a wide range of biological and pharmaceutical activities. However, those extant syntheses using conventional protocols can be time-costly, require harsh conditions, and result in low yields. As a novel and green technique, sonochemistry has emerged as a promising method for organic synthesis with several advantages over conventional methods, including enhancing reaction rates, improving yields, and reducing the use of hazardous solvents. Contemporarily, a growing body of ultrasound-assisted reactions have been applied in the preparation of imidazole derivatives, which demonstrated greater benefits and provided a new strategy. Herein, we introduce the brief history of sonochemistry and focus on the discussion of the multifarious approaches for the synthesis of imidazole-based compounds under ultrasonic irradiation and its advantages in comparison with conventional protocols, including typical name-reactions and various sorts of catalysts in those reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA