Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(30): e2301197120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463218

RESUMO

Collective movement and organization of cell monolayers are important for wound healing and tissue development. Recent experiments highlighted the importance of liquid crystal order within these layers, suggesting that +1 topological defects have a role in organizing tissue morphogenesis. We study fibroblast organization, motion, and proliferation on a substrate with micron-sized ridges that induce +1 and -1 topological defects using simulation and experiment. We model cells as self-propelled deformable ellipses that interact via a Gay-Berne potential. Unlike earlier work on other cell types, we see that density variation near defects is not explained by collective migration. We propose instead that fibroblasts have different division rates depending on their area and aspect ratio. This model captures key features of our previous experiments: the alignment quality worsens at high cell density and, at the center of the +1 defects, cells can adopt either highly anisotropic or primarily isotropic morphologies. Experiments performed with different ridge heights confirm a prediction of this model: Suppressing migration across ridges promotes higher cell density at the +1 defect. Our work enables a mechanism for tissue patterning using topological defects without relying on cell migration.


Assuntos
Fibroblastos , Cicatrização , Divisão Celular , Movimento Celular , Morfogênese
2.
Soft Matter ; 17(14): 3848-3854, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33885449

RESUMO

Spontaneous emergence of chirality is a pervasive theme in soft matter. We report a transient twist forming in achiral nematic liquid crystals confined to a capillary tube with square cross section. At the smectic-nematic phase transition, intertwined disclination line pairs are observed with both helical and kinked lozenge-like contours, configurations that we promote through capillary cross-section geometry and stabilize using fluorescent amphiphilic molecules. The observed texture is similar to that found in "exotic" materials such as chromonics, but it is here observed in common thermotropic nematics upon heating from the smectic into the nematic phase. Numerical modeling further reveals that the disclinations may possess winding characters that are intermediate between wedge and twist, and that vary along the defect contours. In our experiments, we utilize a phase transition to generate otherwise elusive defect structures in common liquid crystal materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA