Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 114(5): 1912-1928, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36637351

RESUMO

Invasive micropapillary carcinoma (IMPC) is a special histopathological subtype of breast cancer. Clinically, IMPC exhibits a higher incidence of lymphovascular invasion and lymph node metastasis compared with that of invasive ductal carcinoma (IDC), the most common type. However, the metabolic characteristics and related mechanisms underlying malignant IMPC biological behaviors are unknown. We performed large-scale targeted metabolomics analysis on resected tumors obtained from chemotherapy-naïve IMPC (n = 25) and IDC (n = 26) patients to investigate metabolic alterations, and we integrated mass spectrometry analysis, RNA sequencing, and ChIP-sequencing data to elucidate the potential molecular mechanisms. The metabolomics revealed distinct metabolic profiles between IMPC and IDC. For IMPC patients, the metabolomic profile was characterized by significantly high levels of arginine methylation marks, and protein arginine methyltransferase 3 (PRMT3) was identified as a critical regulator that catalyzed the formation of these arginine methylation marks. Notably, overexpression of PRMT3 was an independent risk factor for poor IMPC prognosis. Furthermore, we demonstrated that PRMT3 was a key regulator of breast cancer cell proliferation and metastasis both in vitro and in vivo, and treatment with a preclinical PRMT3 inhibitor decreased the xenograft tumorigenic capacity. Mechanistically, PRMT3 regulated the endoplasmic reticulum (ER) stress signaling pathway by facilitating histone H4 arginine 3 asymmetric dimethylation (H4R3me2a), which may endow breast cancer cells with great proliferative and metastatic capacity. Our findings highlight PRMT3 importance in regulating the malignant biological behavior of IMPC and suggest that small-molecule inhibitors of PRMT3 activity might be promising breast cancer treatments.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Papilar , Humanos , Feminino , Carcinoma Ductal de Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Histonas , Carcinoma Papilar/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
2.
Heliyon ; 10(13): e33938, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071710

RESUMO

Purpose: Invasive micropapillary carcinoma (IMPC) of the breast has a high propensity for lymphovascular invasion and axillary lymph node metastasis and displays an 'inside-out' growth pattern, but the molecular mechanism of invasion, metastasis and cell polarity reversal in IMPC is unclear. Methods: and Patients: Cell growth curves, tumor sphere formation assays, transwell assays, mouse xenograft model and immunofluorescence were evaluated to investigate the effects of miR-30c and MTDH. Dual luciferase reporter assays was performed to confirm that the MTDH (metadherin) 3'UTR bound to miR-30c. MiRNA in situ hybridization (ISH) and immunohistochemistry (IHC) were carried out on IMPC patient tissues for miR-30c and MTDH expression, respectively. Results: We found miR-30c as a tumor suppressor gene in cell proliferation, metastasis and polarity reversal of IMPC. Overexpression of miR-30c inhibited cell growth and metastasis in vitro and in vivo. MiR-30c could directly target the MTDH 3'UTR. MiR-30c overexpression inhibited breast cancer cell proliferation, invasion and metastasis by targeting MTDH. Moreover, miR-30c/MTDH axis could also regulate cell polarity reversal of IMPC. By ISH and IHC analyses, miR-30c and MTDH were significantly correlated with tumor size, lymph nodule status and tumor grade, the 'inside-out' growth pattern, overall survival (OS) and disease-free survival (DFS) in IMPC patients. Conclusions: Overall, miR-30c/MTDH axis was responsible for tumor proliferation, metastasis and polarity reversal. It may provide promising therapeutic targets and prognostic biomarkers for patients with IMPC.

3.
Nat Commun ; 13(1): 6578, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323669

RESUMO

Enhancer deregulation is a well-established pro-tumorigenic mechanism but whether it plays a regulatory role in tumor immunity is largely unknown. Here, we demonstrate that tumor cell ablation of mixed-lineage leukemia 3 and 4 (MLL3 and MLL4, also known as KMT2C and KMT2D, respectively), two enhancer-associated histone H3 lysine 4 (H3K4) mono-methyltransferases, increases tumor immunogenicity and promotes anti-tumor T cell response. Mechanistically, MLL4 ablation attenuates the expression of RNA-induced silencing complex (RISC) and DNA methyltransferases through decommissioning enhancers/super-enhancers, which consequently lead to transcriptional reactivation of the double-stranded RNA (dsRNA)-interferon response and gasdermin D (GSDMD)-mediated pyroptosis, respectively. More importantly, we reveal that both the dsRNA-interferon signaling and GSDMD-mediated pyroptosis are of critical importance to the increased anti-tumor immunity and improved immunotherapeutic efficacy in MLL4-ablated tumors. Thus, our findings establish tumor cell enhancers as an additional layer of immune evasion mechanisms and suggest the potential of targeting enhancers or their upstream and/or downstream molecular pathways to overcome immunotherapeutic resistance in cancer patients.


Assuntos
Histona-Lisina N-Metiltransferase , Neoplasias , Humanos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Elementos Facilitadores Genéticos , Histonas/metabolismo , RNA de Cadeia Dupla , Piroptose , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Interferons/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
4.
Cell Death Dis ; 12(12): 1095, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34799559

RESUMO

Invasive micropapillary carcinoma (IMPC) is a special histological subtype of breast cancer, featured with extremely high rates of lymphovascular invasion and lymph node metastasis. Based on a previous series of studies, our team proposed the hypothesis of "clustered metastasis of IMPC tumor cells". However, the transcriptomics characteristics underlying its metastasis are unknown, especially in spatial transcriptomics (ST). In this paper, we perform ST sequencing on four freshly frozen IMPC samples. We draw the transcriptomic maps of IMPC for the first time and reveal its extensive heterogeneity, associated with metabolic reprogramming. We also find that IMPC subpopulations with abnormal metabolism are arranged in different spatial areas, and higher levels of lipid metabolism are observed in all IMPC hierarchical clusters. Moreover, we find that the stromal regions show varieties of gene expression programs, and this difference depends on their distance from IMPC regions. Furthermore, a total of seven IMPC hierarchical clusters of four samples share a common higher expression level of the SREBF1 gene. Immunohistochemistry results further show that high SREBF1 protein expression is associated with lymph node metastasis and poor survival in IMPC patients. Together, these findings provide a valuable resource for exploring the inter- and intra-tumoral heterogeneity of IMPC and identify a new marker, SREBF1, which may facilitate accurate diagnosis and treatment of this disease.


Assuntos
Neoplasias da Mama/genética , Carcinoma Papilar/genética , Expressão Gênica/genética , Transcriptoma/genética , Feminino , Humanos , Fatores de Transcrição
5.
Sci Adv ; 6(20): eaaz8411, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32426500

RESUMO

Transcriptional status determines the HIV replicative state in infected patients. However, the transcriptional mechanisms for proviral replication control remain unclear. In this study, we show that, apart from its function in HIV integration, LEDGF/p75 differentially regulates HIV transcription in latency and proviral reactivation. During latency, LEDGF/p75 suppresses proviral transcription via promoter-proximal pausing of RNA polymerase II (Pol II) by recruiting PAF1 complex to the provirus. Following latency reversal, MLL1 complex competitively displaces PAF1 from the provirus through casein kinase II (CKII)-dependent association with LEDGF/p75. Depleting or pharmacologically inhibiting CKII prevents PAF1 dissociation and abrogates the recruitment of both MLL1 and Super Elongation Complex (SEC) to the provirus, thereby impairing transcriptional reactivation for latency reversal. These findings, therefore, provide a mechanistic understanding of how LEDGF/p75 coordinates its distinct regulatory functions at different stages of the post-integrated HIV life cycles. Targeting these mechanisms may have a therapeutic potential to eradicate HIV infection.


Assuntos
Infecções por HIV , Integrase de HIV , HIV-1 , Linhagem Celular , Infecções por HIV/genética , Integrase de HIV/genética , HIV-1/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Provírus/genética , Fatores de Transcrição/genética , Integração Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA