Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 17(1): 147, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375831

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by severe white matter demyelination. Because of its complex pathogenesis, there is no definite cure for MS. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Arsenic trioxide (ATO) is an ancient Chinese medicine used for its therapeutic properties with several autoimmune diseases. It is also used to inhibit acute immune rejection due to its anti-inflammatory and immunosuppressive properties. However, it is unclear whether ATO has a therapeutic effect on EAE, and the underlying mechanisms have not yet been clearly elucidated. In this study, we attempted to assess whether ATO could be used to ameliorate EAE in mice. METHODS: ATO (0.5 mg/kg/day) was administered intraperitoneally to EAE mice 10 days post-immunization for 8 days. On day 22 post-immunization, the spinal cord, spleen, and blood were collected to analyze demyelination, inflammation, microglia activation, and the proportion of CD4+ T cells. In vitro, for mechanistic studies, CD4+ T cells were sorted from the spleen of naïve C57BL/6 mice and treated with ATO and then used for an apoptosis assay, JC-1 staining, imaging under a transmission electron microscope, and western blotting. RESULTS: ATO delayed the onset of EAE and alleviated the severity of EAE in mice. Treatment with ATO also attenuated demyelination, alleviated inflammation, reduced microglia activation, and decreased the expression levels of IL-2, IFN-γ, IL-1ß, IL-6, and TNF-α in EAE mice. Moreover, the number and proportion of CD4+ T cells in the spinal cord, spleen, and peripheral blood were reduced in ATO-treated EAE mice. Finally, ATO induced CD4+ T cell apoptosis via the mitochondrial pathway both in vitro and in vivo. Additionally, the administration of ATO had no adverse effect on the heart, liver, or kidney function, nor did it induce apoptosis in the spinal cord. CONCLUSIONS: Overall, our findings indicated that ATO plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.


Assuntos
Trióxido de Arsênio/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Encefalomielite Autoimune Experimental/patologia , Animais , Apoptose/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 1171-1178, 2023.
Artigo em Zh | MEDLINE | ID: mdl-37551494

RESUMO

OBJECTIVE: To explore molecular mechanisms by which umbilical cord-derived mesenchymal stem cells suppress the development of GVHD after bone marrow hematopoietic stem cell transplantation. METHODS: A mouse model of aGVHD was constructed after bone marrow hematopoietic stem cell transplantation, and the umbilical cord-derived mesenchymal stem cells were cultured, and then injected into the aGVHD mouse model, so as to investigate its prophylactic efficacy. Prophylactic effect of the exosomes isolated from umbilical cord-derived mesenchymal stem cells on aGVHD mice was assessed. Sequencing analysis of miRNA from exosomes was performed. RESULTS: aGVHD model was successfully constructed after hematopoietic stem cell transplantation. By injecting umbilical cord-derived mesenchymal stem cells into the GVHD mouse model, it was found that the treatment significantly prolonged survival time of mice compared to the untreated group. Injection exosomes derived from umbilical cord-derived mesenchymal stem cells into the GVHD mouse model significantly prolonged the survival time of mice compared to the untreated group. High-throughput sequencing data showed that microRNA such as miR-21 in exosomes isolated from umbilical cord-derived mesenchymal stem cells, which mainly affected the signaling pathways such as cell adhesion, RNA degradation. CONCLUSION: The umbilical cord-derived mesenchymal stem cells can prevent the occurrence of aGVHD after HSCT, which is mediate by MicroRNA in the exosomes derived from umbilical cord-derived mesenchymal stem cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA