RESUMO
Cardiovascular diseases are leading causes that threaten people's life. To investigate cells that are involved in disease development and tissue repair, various technologies have been introduced. Among these technologies, lineage tracing is a powerful tool to track the fate of cells in vivo, providing deep insights into cellular behavior and plasticity. In cardiac diseases, newly formed cardiomyocytes and endothelial cells are found from proliferation of local cells, while fibroblasts and macrophages are originated from diverse cell sources. Similarly, in response to vascular injury, various sources of cells including media smooth muscle cells, endothelium, resident progenitors and bone marrow cells are involved in lesion formation and/or vessel regeneration. In summary, current review summarizes the development of lineage tracing techniques and their utilizations in investigating roles of different cell types in cardiovascular diseases.
Assuntos
Biomarcadores , Doenças Cardiovasculares/etiologia , Linhagem da Célula/genética , Rastreamento de Células/métodos , Suscetibilidade a Doenças , Variação Genética , Miócitos Cardíacos/metabolismo , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Células Endoteliais/metabolismo , Humanos , Macrófagos/metabolismo , Microscopia/métodos , Miócitos Cardíacos/citologia , Miócitos de Músculo Liso/metabolismo , Organogênese/genética , Células-Tronco/metabolismo , Imagem com Lapso de Tempo/métodosRESUMO
Ethers (C-O/S) are ubiquitously found in a wide array of functional molecules and natural products. Nonetheless, the synthesis of imino sulfide ethers, containing an N(sp2 )=C(sp2 )-O/S fragment, still remains a challenge because of its sensitivity to acid. Developed here in is an unprecedented electrochemical oxidative carbon-atom difunctionalization of isocyanides, providing a series of novel multisubstituted imino sulfide ethers. Under metal-free and external oxidant-free conditions, isocyanides react smoothly with simple and readily available mercaptans and alcohols. Importantly, the procedure exhibited high stereoselectivities, excellent functional-group tolerance, and good efficiency on large-scale synthesis, as well as further derivatization of the products.
RESUMO
BACKGROUND: The aseptic meningitis caused by varicella zoster virus (VZV) reactivation was less described in the literature, most of which were detected by means of polymerase chain reaction. The authors presented 4 adult immunocompetent patients with acute aseptic meningitis with VZV infection diagnosed by next-generation sequencing (NGS). CASE PRESENTATION: Four patients were admitted to the hospital with headache and fever between March 2018 and August 2019. The median ages were 37 years (range 22-52 years). The median symptoms onset to clinic time was 3.5 days (range 3-6 days). Two patients had signs of meningeal irritation. Rash occurred after the meningitis symptoms in 1 patient (time from meningitis symptoms to rash, 2 days). No other sign or symptom was reported. The brain Magnetic resonance imaging and electroencephalography were normal in all patients. Cerebrospinal fluid (CSF) samples were obtained at a median of 4 days (range 3-7 days) from the meningitis symptoms onset. Opening pressure of lumbar puncture after admission were high in these cases (median 256 mm H2O; range 165-400 mm H2O). White blood cell counts and protein levels were significantly elevated in CSF samples (median 317 × 10^6/L, range 147-478 × 10^6/L; median 1.41 g/L, range 0.57-1.79 g/L). The cytology of CSF demonstrated a lymphocytic pleocytosis, and most multinuclear cells. The culture of CSF was negative for all 4 cases, while T-cell spot test was positive for 2 cases, who were administrated with anti-tuberculosis treatment for suspicious tuberculous meningitis. NGS of CSF (the Vision Medical Research Institute) detected specific sequences of VZV in the 4 cases within 72 h after admission. The inappropriate treatment were stopped while acyclovir were continued intravenously for 10-14 days. All patients recovered completely. CONCLUSIONS: VZV is an infectious agent that causes aseptic meningitis in immunocompetent adults and could not be accompanied by skin manifestations. The NGS of CSF is a rapid detection for the identification and differentiation of meningitis in patients, which is of great importance for providing the rapid and accurate diagnosis and the targeted antimicrobial therapy for central nervous system infection.
Assuntos
Líquido Cefalorraquidiano/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Meningite Asséptica/etiologia , Meningite Viral/etiologia , Infecção pelo Vírus da Varicela-Zoster/complicações , Aciclovir/uso terapêutico , Adulto , Antivirais/uso terapêutico , Líquido Cefalorraquidiano/citologia , Exantema/etiologia , Exantema/virologia , Herpesvirus Humano 3/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Meningite Asséptica/diagnóstico , Meningite Asséptica/tratamento farmacológico , Meningite Viral/diagnóstico por imagem , Pessoa de Meia-Idade , Infecção pelo Vírus da Varicela-Zoster/diagnóstico por imagem , Infecção pelo Vírus da Varicela-Zoster/tratamento farmacológico , Adulto JovemRESUMO
BACKGROUND: Infections of the central nervous system (CNS) are potentially life-threatening and can cause serious morbidity. We evaluated the clinical value of metagenomic next-generation sequencing (mNGS) in the diagnosis of infectious encephalitis and meningitis and explored the factors affecting the results of mNGS. METHODS: Patients with suspected cases of encephalitis or meningitis who presented in Northern Jiangsu People's Hospital from 1 March 2018 to 30 September 2022 were collected. Demographic, historical, and clinical information were obtained, and cerebrospinal fluid (CSF) samples were treated with mNGS. The pathogen was identified using National Center for Biotechnology Information (NCBI) GenBank sequence data. RESULTS: Ninety-six patients were screened and finally 90 subjects enrolled. Of the 90 enrolled cases, 67 (74.4%) were diagnosed with central nervous system infections, which included 48 cases (71.6%) of viral infection, 11 (12.2%) of bacterial infection, 5 (7.5%) of mycobacterium tuberculosis, 2 (3.0%) of fungal infection, and 1 (1.5%) of rickettsia infection. From these cases, mNGS identified 40 (44.4%) true-positive cases, 3 (3.3%) false-positive case, 22 (24.4%) true-negative cases, and 25 (27.8%) false-negative cases. The sensitivity and specificity of mNGS were 61.5% and 88%, respectively. mNGS of CSF could show a higher positive rate in patients with marked CSF abnormalities, including elevated protein concentrations and monocyte counts. CONCLUSION: mNGS of CSF is an effective method for detecting infectious encephalitis and meningitis, and the results should be analyzed combined with conventional microbiological testing results.
Assuntos
Encefalite , Encefalite Infecciosa , Meningite , Humanos , Estudos Retrospectivos , Meningite/diagnóstico , Encefalite Infecciosa/diagnóstico , Encefalite/diagnóstico , Sensibilidade e Especificidade , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
Astragaloside IV (ASIV) promotes the proliferation of key cells, endothelial progenitor cells (EPCs), during the wound healing process, while exosomes and hydrogels are ideal drug delivery carriers. This study aims to explore the mechanism of action of the "ROS-responsive hydrogel-engineered EPCs-targeted exosomes" composite ASIV delivery system (PF-PEG@ASIV-EXO) in diabetic wound healing. Surface markers of EPCs and PF-PEG@ASIV-EXO were detected separately. The degradation rate of PF-PEG@ASIV-EXO was assessed after coculturing with human dermal fibroblasts (HDF), immortalized human epidermal cells (HaCAT), and human EPCs, and the biocompatibility of EPCs and PF-PEG@ASIV-EXO was evaluated through exosome release and uptake. The effects of PF-PEG@ASIV-EXO on the viability, angiogenesis, ferroptosis, and mitochondria of high-glucose-treated EPCs (HS-EPCs) were investigated. A diabetic wound rat model was established, and the effects of PF-PEG@ASIV-EXO on diabetic wounds were evaluated through HE and Masson staining, as well as levels of VWF, CD31, and ferroptosis in the skin. EPCs were successfully isolated, and PF-PEG@ASIV-EXO was successfully constructed. PF-PEG@ASIV-EXO exhibited a high degradation rate within EPCs, and both EPCs and PF-PEG@ASIV-EXO showed good biocompatibility. PF-PEG@ASIV-EXO promoted the vitality and angiogenesis of EPCs, inhibited ferroptosis, and mitigated mitochondrial damage. Following treatment with PF-PEG@ASIV-EXO, the healing of diabetic rat skin accelerated, accompanied by elevated expression of VWF and CD31, and reduced ferroptosis levels. PF-PEG@ASIV-EXO hydrogel inhibits ferroptosis, promotes angiogenesis, and thereby accelerates the healing of diabetic wounds.
Assuntos
Diabetes Mellitus Experimental , Ferroptose , Hidrogéis , Neovascularização Fisiológica , Polietilenoglicóis , Ratos Sprague-Dawley , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Ratos , Ferroptose/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Masculino , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Saponinas/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , AngiogêneseRESUMO
This study aimed to explore the potential of using mesenchymal stem cell (MSC)-derived exosomes (MSC-Exos) pre-treated with Astragaloside IV (ASIV) to alleviate inflammation in high glucose (HG)-damaged endothelial cells. MSC-Exos were isolated from untreated MSCs and ASIV-pre-treated MSCs, and their characteristics were assessed. The expression of miR-146a-5p in MSC-Exos was determined, and it was found that ASIV treatment enhanced its expression. In order to assess the impact of highly miR-146a-5p-expressing MSC-Exos on HG-injured endothelial cells, we established a model of HG-induced inflammation using human umbilical vein endothelial cells (HUVECs). The study measured cell viability, apoptosis, tube formation, and levels of inflammatory cytokines among the different treatment groups. It was found that transferring MSC-Exos with high miR-146a-5p expression to HG-damaged HUVECs increased cell viability and tube formation ability while reducing the number of apoptotic cells. Additionally, changes in inflammatory factors indicated a reduction in the inflammatory response. Further investigation demonstrated that miR-146a-5p inhibited the expression of TNF receptor associated factor 6 (TRAF6) and phosphorylated NF-κB, which are involved in the inflammatory response. This resulted in the alleviation of inflammation in HG-damaged endothelial cells. In summary, our findings indicate that ASIV treatment stimulated the secretion of MSC-Exos that exhibited increased levels of miR-146a-5p. These exosomes, in turn, regulated the TRAF6/NF-κB pathway. As a result of this modulation, the inflammatory response in HG-damaged endothelial cells was alleviated. These findings offer a fresh approach to addressing vascular complications associated with diabetes, which could lead to novel treatment strategies in the field.
RESUMO
Due to the importance of chroman frameworks in medicinal chemistry, the development of novel synthetic methods for these structures is gaining increasing interest of chemists. Reported here is a new (4 + 2) radical annulation approach for the construction of these functional six-membered frameworks via photocatalysis. Featuring mild reaction conditions, the protocol allows readily available N-hydroxyphthalimide esters and electron-deficient olefins to be converted into a wide range of valuable chromans in a highly selective manner. Moreover, the present strategy can be used in the late-stage functionalization of natural product derivatives and biologically active compounds, which demonstrated the potential application. This method is complementary to the traditional Diels-Alder [4 + 2] cycloaddition reaction of ortho-quinone methides and electron-rich dienophiles, since electron-deficient dienophiles were smoothly transformed into the desired chromans.
RESUMO
Heart disease is still the leading killer all around the world, and its incidence is expected to increase over the next decade. Previous reports have already shown the role of fibroblast growth factor10 (FGF10) in alleviating heart diseases. However, FGF10 has not been used to treat heart diseases because the free protein has short half-life and low bioactivity. Here, an injectable coacervate was designed to protect growth factor from degradation during delivery and the effects of the FGF10 coacervate were studied using a mice acute myocardial infarction (MI) model. As shown in our echocardiographic results, a single injection of FGF10 coacervate effectively inhibited preserved cardiac contractibility and ventricular dilation when compared with free FGF10 and the saline treatment 6 weeks after MI. It is revealed in histological results that the MI induced myocardial inflammation and fibrosis was reduced after FGF10 coacervate treatment. Furthermore, FGF10 coacervate treatment could improve arterioles and capillaries stabilization through increasing the proliferation of endothelial and mural cells. However, with the same dosage, no statistically significant difference was shown between free FGF10, heparin+FGF10 and saline treatment, especially in long term. On another hand, FGF10 coacervate also increased the expression of cardiac-associated the mRNA (cTnT, Cx43 and α-SMA), angiogenic factors (Ang-1 and VEGFA) and decreased the level of inflammatory factor (tumor necrosis factor-α). The downstream signaling of the FGF10 was also investigated, with the western blot results showing that FGF10 coacervate activated the p-FGFR, PI3K/Akt and ERK1/2 pathways to a more proper level than free FGF10 or heparin+FGF10. In general, it is revealed in this research that one-time injection of FGF10 coacervate sufficiently attenuated MI induced injury when compared with an equal dose of free FGF10 or heparin+FGF10 injection.
RESUMO
Cell-based transplantation strategies possess great potential for spinal cord injury (SCI) repair. Basic fibroblast growth factor (bFGF) has been reported to have multiple neuro-promoting effects on developing and adult nervous system of mammals and considered a promising therapy for nerve injury following SCI. Human dental pulp stem cells (DPSCs) are abundant stem cells with low immune rejection, which can be considered for cell replacement therapy. The purpose of this study was to investigate the roles of DPSCs which express bFGF under the regulation of five hypoxia-responsive elements (5HRE) using an adeno-associated virus (AAV-5HRE-bFGF-DPSCs) in SCI repairing model. In this study, DPSCs were revealed to differentiate into CD13+ pericytes and up-regulate N-cadherin expression to promote the re-attachment of CD13+ pericytes to vascular endothelial cells. The re-attachment of CD13+ pericytes to vascular endothelial cells subsequently increased the flow rate of blood in microvessels via the contraction of protuberance. As a result, increased numbers of red blood cells carried more oxygen to the damaged area and the local hypoxia microenvironment in SCI was improved. Thus, this study represents a step forward towards the potential use of AAV-5HRE-bFGF-DPSCs in SCI treatment in clinic.
RESUMO
By testing pseudotyped SARS-CoV-2 and HIV-based lentivirus, this study reports that exosomes/microvesicles (Ex/Mv) isolated from murine hypothalamic neural stem/progenitor cells (htNSC) or subtype htNSCPGHM as well as hippocampal NSC have innate immunity-like actions against these RNA viruses. These extracellular vesicles also have a cell-free innate antiviral action by attacking and degrading viruses. We further generated the induced versions of Ex/Mv through prior viral exposure to NSCs and found that these induced Ex/Mv were stronger than basal Ex/Mv in reducing the infection of these viruses, suggesting the involvement of an adaptive immunity-like antiviral function. These NSC Ex/Mv were found to be characterized by producing large libraries of P element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) against genomes of various viruses, and some of these piRNAs were enriched during the adaptive immunity-like reaction, possibly contributing to the antiviral effects of these Ex/Mv. In conclusion, NSC Ex/Mv have antiviral immunity and could potentially be developed to combat against various viruses.
RESUMO
Neuropeptide signalling systems comprising peptide ligands and cognate receptors are evolutionarily ancient regulators of physiology and behaviour. However, there are challenges associated with determination of orthology between neuropeptides in different taxa. Orthologs of vertebrate neuropeptide-Y (NPY) known as neuropeptide-F (NPF) have been identified in protostome invertebrates, whilst prolactin-releasing peptide (PrRP) and short neuropeptide-F (sNPF) have been identified as paralogs of NPY/NPF in vertebrates and protostomes, respectively. Here we investigated the occurrence of NPY/NPF/PrRP/sNPF-related signalling systems in a deuterostome invertebrate phylum - the Echinodermata. Analysis of transcriptome/genome sequence data revealed loss of NPY/NPF-type signalling, but orthologs of PrRP-type neuropeptides and sNPF/PrRP-type receptors were identified in echinoderms. Furthermore, experimental studies revealed that the PrRP-type neuropeptide pQDRSKAMQAERTGQLRRLNPRF-NH2 is a potent ligand for a sNPF/PrRP-type receptor in the starfish Asterias rubens. Our findings indicate that PrRP-type and sNPF-type signalling systems are orthologous and originated as a paralog of NPY/NPF-type signalling in Urbilateria.