Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2204630119, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914123

RESUMO

The effect of Lifshitz transition on thermodynamics and superconductivity in hole-doped cuprates has been heavily debated but remains an open question. In particular, an observed peak of electronic specific heat is proposed to originate from fluctuations of a putative quantum critical point p* (e.g., the termination of pseudogap at zero temperature), which is close to but distinguishable from the Lifshitz transition in overdoped La-based cuprates where the Fermi surface transforms from hole-like to electron-like. Here we report an in situ angle-resolved photoemission spectroscopy study of three-dimensional Fermi surfaces in La2-xSrxCuO4 thin films (x = 0.06 to 0.35). With accurate kz dispersion quantification, the said Lifshitz transition is determined to happen within a finite range around x = 0.21. Normal state electronic specific heat, calculated from spectroscopy-derived band parameters, reveals a doping-dependent profile with a maximum at x = 0.21 that agrees with previous thermodynamic microcalorimetry measurements. The account of the specific heat maximum by underlying band structures excludes the need for additionally dominant contribution from the quantum fluctuations at p*. A d-wave superconducting gap smoothly across the Lifshitz transition demonstrates the insensitivity of superconductivity to the dramatic density of states enhancement.

2.
BMC Immunol ; 25(1): 31, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734625

RESUMO

BACKGROUND: Thyroid eye disease (TED) is an inflammatory process involving lymphocyte-mediated immune response and orbital tissue damage. The anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies produced by B lymphocytes are involved in the activation of orbital fibroblasts and the inflammatory process of orbital tissue damage in TED. The purpose of this study was to explore the role of IGF-1R in the mechanistic connection between orbital fibroblasts and B lymphocytes in TED. METHODS: Orbital fibroblasts sampled from orbital connective tissues and peripheral B lymphocytes isolated from peripheral blood, which were obtained from 15 patients with TED and 15 control patients, were co-cultured at a ratio of 1:20. The level of IGF-1R expression in orbital fibroblasts was evaluated by flow cytometry and confocal microscopy. Transient B lymphocyte depletion was induced with anti-CD20 monoclonal antibody rituximab, while the IGF-1R pathway was blocked by the IGF-1R binding protein. The expression levels of interleukin-6 (IL-6) and regulated upon activation, normal T cell expressed and secreted (RANTES) in the co-culture model were quantified via ELISA. RESULTS: IGF-1R expression was significantly elevated in TED orbital fibroblasts compared to that of controls. A 24-h co-culture of orbital fibroblasts with peripheral B lymphocytes induced elevated expression levels of IL-6 and RANTES in each group (TED patients and controls), with the highest levels occurring in TED patients (T + T group). Rituximab and IGF-1R binding protein significantly inhibited increased levels of IL-6 and RANTES in the co-culture model of TED patients. CONCLUSIONS: IGF-1R may mediate interaction between orbital fibroblasts and peripheral B lymphocytes; thus, blocking IGF-1R may reduce the local inflammatory response in TED. Rituximab-mediated B lymphocyte depletion played a role in inhibiting inflammatory responses in this in vitro co-culture model, providing a theoretical basis for the clinical application of anti-CD20 monoclonal antibodies in TED.


Assuntos
Linfócitos B , Fibroblastos , Oftalmopatia de Graves , Receptor IGF Tipo 1 , Feminino , Humanos , Masculino , Linfócitos B/imunologia , Linfócitos B/metabolismo , Comunicação Celular , Células Cultivadas , Quimiocina CCL5/metabolismo , Técnicas de Cocultura , Fibroblastos/metabolismo , Oftalmopatia de Graves/metabolismo , Oftalmopatia de Graves/imunologia , Interleucina-6/metabolismo , Depleção Linfocítica , Órbita/metabolismo , Órbita/imunologia , Receptor IGF Tipo 1/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico
3.
Small ; 20(4): e2306396, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712176

RESUMO

Rechargeable zinc-air batteries (Re-ZABs) are one of the most promising next-generation batteries that can hold more energy while being cost-effective and safer than existing devices. Nevertheless, zinc dendrites, non-portability, and limited charge-discharge cycles have long been obstacles to the commercialization of Re-ZABs. Over the past 30 years, milestone breakthroughs have been made in technical indicators (safety, high energy density, and long battery life), battery components (air cathode, zinc anode, and gas diffusion layer), and battery configurations (flexibility and portability), however, a comprehensive review on advanced design strategies for Re-ZABs system from multiple angles is still lacking. This review underscores the progress and strategies proposed so far to pursuit the high-efficiency Re-ZABs system, including the aspects of rechargeability (from primary to rechargeable), air cathode (from unifunctional to bifunctional), zinc anode (from dendritic to stable), electrolytes (from aqueous to non-aqueous), battery configurations (from non-portable to portable), and industrialization progress (from laboratorial to practical). Critical appraisals of the advanced modification approaches (such as surface/interface modulation, nanoconfinement catalysis, defect electrochemistry, synergistic electrocatalysis, etc.) are highlighted for cost-effective flexible Re-ZABs with good sustainability and high energy density. Finally, insights are further rendered properly for the future research directions of advanced zinc-air batteries.

4.
J Magn Reson Imaging ; 59(1): 164-176, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013673

RESUMO

BACKGROUND: Poorly controlled type 2 diabetes mellitus (T2DM) is known to result in left ventricular (LV) dysfunction, myocardial fibrosis, and ischemic/nonischemic dilated cardiomyopathy (ICM/NIDCM). However, less is known about the prognostic value of T2DM on LV longitudinal function and late gadolinium enhancement (LGE) assessed with cardiac MRI in ICM/NIDCM patients. PURPOSE: To measure LV longitudinal function and myocardial scar in ICM/NIDCM patients with T2DM and to determine their prognostic values. STUDY TYPE: Retrospective cohort. POPULATION: Two hundred thirty-five ICM/NIDCM patients (158 with T2DM and 77 without T2DM). FIELD STRENGTH/SEQUENCE: 3T; steady-state free precession cine; phase-sensitive inversion recovery segmented gradient echo LGE sequences. ASSESSMENT: Global peak longitudinal systolic strain rate (GLPSSR) was evaluated to LV longitudinal function with feature tracking. The predictive value of GLPSSR was determined with ROC curve. Glycated hemoglobin (HbA1c) was measured. The primary adverse cardiovascular endpoint was follow up every 3 months. STATISTICAL TESTS: Mann-Whitney U test or student's t-test; Intra and inter-observer variabilities; Kaplan-Meier method; Cox proportional hazards analysis (threshold = 5%). RESULTS: ICM/NIDCM patients with T2DM exhibited significantly lower absolute value of GLPSSR (0.39 ± 0.14 vs. 0.49 ± 0.18) and higher proportion of LGE positive (+) despite similar LV ejection fraction, compared to without T2DM. LV GLPSSR was able to predict primary endpoint (AUC 0.73) and optimal cutoff point was 0.4. ICM/NIDCM patients with T2DM (GLPSSR < 0.4) had more markedly impaired survival. Importantly, this group (GLPSSR < 0.4, HbA1c ≥ 7.8%, or LGE (+)) exhibited the worst survival. In multivariate analysis, GLPSSR, HbA1c, and LGE (+) significantly predicted primary adverse cardiovascular endpoint in overall ICM/NIDCM and ICM/NIDCM patients with T2DM. CONCLUSIONS: T2DM has an additive deleterious effect on LV longitudinal function and myocardial fibrosis in ICM/NIDCM patients. Combining GLPSSR, HbA1c, and LGE could be promising markers in predicting outcomes in ICM/NIDCM patients with T2DM. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: 5.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Diabetes Mellitus Tipo 2 , Disfunção Ventricular Esquerda , Humanos , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico por imagem , Prognóstico , Estudos Retrospectivos , Diabetes Mellitus Tipo 2/complicações , Meios de Contraste , Hemoglobinas Glicadas , Imagem Cinética por Ressonância Magnética/métodos , Gadolínio , Função Ventricular Esquerda , Fibrose , Disfunção Ventricular Esquerda/complicações , Disfunção Ventricular Esquerda/diagnóstico por imagem , Isquemia
5.
FASEB J ; 37(2): e22738, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583727

RESUMO

Vitamin D receptor was previously reported to be protective in acute kidney injury (AKI) with the mechanism unclear, while the role of renal localized glutathione peroxidase 3 (GPX3) was not illustrated. The present study aims to investigate the role of GPX3 as well as its correlation with vitamin D-vitamin D receptor (VD-VDR) in ischemia-reperfusion (I/R)-induced renal oxidative stress injury. We showed that the expression of GPX3 and VDR were consistently decreased in renal tissues of I/R-related AKI patients and mice models. VDR agonist paricalcitol could reverse GPX3 expression and inhibit oxidative stress in I/R mice or hypoxia-reoxygenation (H/R) insulted HK-2 cells. VDR deficiency resulted in aggregated oxidative stress and severer renal injury accompanied by further decreased renal GPX3, while tubular-specific VDR overexpression remarkably reduced I/R-induced renal injury with recovered GPX3 in mice. Neither serum selenium nor selenoprotein P was affected by paricalcitol administration nor Vdr modification in vivo. In addition, inhibiting GPX3 abrogated the protective effects of VD-VDR in HK-2 cells, while GPX3 overexpression remarkably attenuated H/R-induced oxidative stress and apoptosis. Mechanistic probing revealed the GPX3 as a VDR transcriptional target. Our present work revealed that loss of renal GPX3 may be a hallmark that promotes renal oxidative stress injury and VD-VDR could protect against I/R-induced renal injury via inhibition of oxidative stress partly by trans-regulating GPX3. In addition, maintenance of renal GPX3 could be a therapeutic strategy for ischemic AKI.


Assuntos
Injúria Renal Aguda , Glutationa Peroxidase , Receptores de Calcitriol , Animais , Camundongos , Injúria Renal Aguda/metabolismo , Apoptose , Glutationa Peroxidase/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Estresse Oxidativo , Receptores de Calcitriol/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
6.
Langmuir ; 40(9): 4852-4859, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382061

RESUMO

Transition metal oxides with the merits of high theoretical capacities, natural abundance, low cost, and environmental benignity have been regarded as a promising anodic material for lithium ion batteries (LIBs). However, the severe volume expansion upon cycling and poor conductivity limit their cycling stability and rate capability. To address this issue, NiO embedded and N-doped porous carbon nanorods (NiO@NCNR) and nanotubes (NiO@NCNT) are synthesized by the metal-catalyzed graphitization and nitridization of monocrystalline Ni(II)-triazole coordinated framework and Ni(II)/melamine mixture, respectively, and the following oxidation in air. When applied as an anodic material for LIBs, the NiO@NCNR and NiO@NCNT hybrids exhibit a decent capacity of 895/832 mA h g-1 at 100 mA g-1, high rate capability of 484/467 mA h g-1 at 5.0 A g-1, and good long-term cycling stability of 663/634 mA h g-1 at 600th cycle at 1 A g-1, which are much better than those of NiO@carbon black (CB) control sample (701, 214, and 223 mA h g-1). The remarkable electrochemical properties benefit from the advanced nanoarchitecture of NiO@NCNR and NiO@NCNT, which offers a length-controlled one-dimensional porous carbon nanoarchitecture for effective e-/Li+ transport, affords a flexible carbon skeleton for spatial confinement, and forms abundant nanocavities for stress buffering and structure reinforcement during discharge/charging processes. The rational structural design and synthesis may pave a way for exploring advanced metal oxide based anodic materials for next-generation LIBs.

7.
Microb Cell Fact ; 23(1): 179, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890717

RESUMO

BACKGROUND: Human lysozyme (hLYZ) is a natural antibacterial protein with broad applications in food and pharmaceutical industries. Recombinant production of hLYZ in Komagataella phaffii (K. phaffii) has attracted considerable attention, but there are very limited strategies for its hyper-production in yeast. RESULTS: Here through Atmospheric and Room Temperature Plasma (ARTP)-based mutagenesis and transcriptomic analysis, the expression of two genes MYO1 and IQG1 encoding the cytokinesis core proteins was identified downregulated along with higher hLYZ production. Deletion of either gene caused severe cytokinesis defects, but significantly enhanced hLYZ production. The highest hLYZ yield of 1,052,444 ± 23,667 U/mL bioactivity and 4.12 ± 0.11 g/L total protein concentration were obtained after high-density fed-batch fermentation in the Δmyo1 mutant, representing the best production of hLYZ in yeast. Furthermore, O-linked mannose glycans were characterized on this recombinant hLYZ. CONCLUSIONS: Our work suggests that cytokinesis-based morphology engineering is an effective way to enhance the production of hLYZ in K. phaffii.


Assuntos
Muramidase , Proteínas Recombinantes , Saccharomycetales , Muramidase/metabolismo , Muramidase/genética , Muramidase/biossíntese , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/metabolismo , Saccharomycetales/genética , Humanos , Fermentação , Citocinese , Engenharia Metabólica/métodos , Técnicas de Cultura Celular por Lotes
8.
Eur J Clin Microbiol Infect Dis ; 43(6): 1061-1072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38536523

RESUMO

INTENTION: Immunosuppressive therapy is the major treatment approach for patients with anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV). Due to impaired cellular immunological function and the use of glucocorticoids and immunosuppressants, AAV patients are predisposed to opportunistic infections, including tuberculosis (TB). This retrospective study aims to analyze the clinical characteristics of patients with AAV and TB and explore suitable glucocorticoid regimens for them. So as to provide a basis for future clinical guidelines and have important value for guiding clinical treatment. METHODS: This study retrospectively reviewed 58 AAV patients (18-80 years old) with TB admitted to Changsha Central Hospital Affiliated with the University of South China from 2016.1 to 2023.4 Patients were divided into standard-dose and reduced-dose glucocorticoid groups before retrospectively analyzing their medical records. RESULTS: A total of 58 AAV patients with TB were enrolled, with 15 dying throughout the monitoring period. Through analysis data, compared with the standard-dose group, the reduced group had less proteinuria and hematuria. In survival analysis, the reduced-dose glucocorticoid group had lower mortality than the standard-dose group (P = 0.03); however, no significant difference was noted in the use of immunoglobulin (P = 0.39), tuberculosis activity (P = 0.64), and age stratification (P = 0.40). The BVAS score before treatment and 6 months post-treatment suggest that the two regimens cause the same risk of ESKD (P > 0.05). CONCLUSION: In conclusion, the reduced glucocorticoid dose group can achieve the same curative effect as the standard dose group and has less damage to the kidney in hematuria and proteinuria. Therefore, the reduced glucocorticoid dose treatment regimen may be more suitable for AAV patients with TB.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Glucocorticoides , Tuberculose , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Glucocorticoides/administração & dosagem , Glucocorticoides/uso terapêutico , Masculino , Feminino , Idoso , Adulto , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/complicações , Adulto Jovem , Idoso de 80 Anos ou mais , Adolescente , Tuberculose/tratamento farmacológico , Tuberculose/complicações , China , Imunossupressores/administração & dosagem , Imunossupressores/uso terapêutico
9.
Exp Cell Res ; 431(1): 113716, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37488006

RESUMO

Papillary thyroid cancer (PTC) has seen a worldwide expansion in incidence in the past three decades. Tumor-derived exosomes have been associated with the metastasis of cancer cells and are present within the local hypoxic tumor microenvironment, where they mediate intercellular communication by transferring molecules including microRNAs (miRNAs) between cells. Although miRNAs have been shown to serve as non-invasive biomarkers for cancer diagnosis, the role of hypoxia-induced tumor-derived exosomes in PTC progression remains unclear. Herein, we investigated the differentially expressed miRNA expression profiles from GEO datasets (GSE191117 and GSE151180) by using the DESeq package in R and identified a novel role for miR-221-3p as an oncogene in PTC development. In vivo and in vitro loss and gain assays were used to clarify the mechanism of hypoxic PTC cells derived exosomal-miR-221-3p in PTC. miR-221-3p was upregulated in human PTC plasma exosomes, tissues and cell lines. We found that hypoxic PTC cells derived exosomal-miR-221-3p promoted normoxic PTC cells proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro, while inhibition of miR-221-3p limited PTC tumor growth in our PTC xenograft model in nude mice. We finally identified ZFAND5, to be a miR-221-3p target. Mechanistically, hypoxic PTC cell lines-derived exosomes carrying miR-221-3p promoted PTC tumorigenesis by regulating ZFAND5. Our findings further the understanding of the underlying mechanisms associated with PTC progression and identify exosomal-miR-221-3p as a potential biomarker for the diagnosis and prognosis of PTC patients. Our study also suggests that miR-221-3p inhibitors could be a potential treatment strategy for PTC.


Assuntos
Exossomos , MicroRNAs , Neoplasias da Glândula Tireoide , Animais , Camundongos , Humanos , Câncer Papilífero da Tireoide/patologia , Exossomos/metabolismo , Camundongos Nus , MicroRNAs/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/patologia , Hipóxia/genética , Hipóxia/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Microambiente Tumoral
10.
BMC Ophthalmol ; 24(1): 305, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044126

RESUMO

BACKGROUND: Addressing presbyopia in the aging population, particularly in non-cataractous patients, remains a challenge. This study evaluates the outcomes of refractive lens exchange (RLE) with AT LISA tri 839MP trifocal intraocular lens (IOL) implantation in a Chinese presbyopic population without cataracts. METHODS: The study included 164 eyes from 82 patients undergoing bilateral RLE at Peking Union Medical College Hospital. Comprehensive evaluations encompassed visual acuities, refraction, ocular aberrometry, and subjective outcomes via the VF-14 questionnaire. The focus was on postoperative visual performance, refractive outcomes, safety, objective optical quality, and patient satisfaction. RESULTS: 100%, 90.2%, and 89.0% of patients achieved binocular UDVA, UNVA, and UIVA of logMAR 0.1 or better at 6 months postoperatively. 97.6% of eyes were within ± 1.00 D of emmetropia postoperatively. Optical quality assessments showed increases in modulation transfer function and Strehl ratios (p < 0.05). High-order aberrations decreased significantly (p < 0.05). Despite the high incidence of posterior capsule opacification (83.2%), managed with early Nd: YAG capsulotomy, no other severe complications were reported. Patient-reported outcomes indicated high satisfaction, with an average VF-14 score of 94.3 ± 10.2 and 93.5% achieving complete spectacle independence. Halo (66.2%) was the most commonly reported optical phenomena, followed by glare (18.2%), and starburst (7.8%) after surgery. CONCLUSIONS: Bilateral RLE with trifocal IOLs in presbyopic patients without cataracts significantly improves visual acuity and reduces ocular aberrations in presbyopic patients. The procedure offers high patient satisfaction and spectacle independence, though it requires careful patient selection and management of expectations regarding potential photic phenomena.


Assuntos
Implante de Lente Intraocular , Lentes Intraoculares Multifocais , Satisfação do Paciente , Presbiopia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , China/epidemiologia , População do Leste Asiático , Implante de Lente Intraocular/métodos , Presbiopia/cirurgia , Presbiopia/fisiopatologia , Refração Ocular , Inquéritos e Questionários , Visão Binocular , Acuidade Visual
11.
Biomed Chromatogr ; 38(1): e5763, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858975

RESUMO

Alisol B 23-acetate (AB23A) has been demonstrated to have beneficial effects on nonalcoholic steatohepatitis (NASH). However, the mechanisms of AB23A on NASH remain unclear. This study aimed to investigate the mechanisms underlying the metabolic regulatory effects of AB23A on NASH. We used AB23A to treat mice with NASH, which was induced by a methionine and choline deficient (MCD) diet. We initially investigated therapeutic effect and resistance to oxidation and inflammation of AB23A on NASH. Subsequently, we performed untargeted metabolomic analyses and relative validation assessments to evaluate the metabolic regulatory effects of AB23A. AB23A reduced lipid accumulation, ameliorated oxidative stress and decreased pro-inflammatory cytokines in the liver. Untargeted metabolomic analysis found that AB23A altered the metabolites of liver. A total of 55 differential metabolites and three common changed pathways were screened among the control, model and AB23A treatment groups. Further tests validated the effects of AB23A on modulating common changed pathway-involved factors. AB23A treatment can ameliorate NASH by inhibiting oxidative stress and inflammation. The mechanism of AB23A on NASH may be related to the regulation of alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, and arginine biosynthesis pathways.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metionina/metabolismo , Metionina/farmacologia , Colina , Fígado/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacologia , Dieta , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
12.
Chem Soc Rev ; 52(23): 8319-8373, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37920962

RESUMO

High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.

13.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676098

RESUMO

This paper designed and developed an online digital imaging excitation sensor for wind power gearbox wear condition monitoring based on an adaptive deep learning method. A digital imaging excitation sensing image information collection architecture for magnetic particles in lubricating oil was established to characterize the wear condition of mechanical equipment, achieving the real-time online collection of wear particles in lubricating oil. On this basis, a mechanical equipment wear condition diagnosis method based on online wear particle images is proposed, obtaining data from an engineering test platform based on a wind power gearbox. Firstly, a foreground segmentation preprocessing method based on the U-Net network can effectively eliminate the interference of bubbles and dark fields in online wear particle images, providing high-quality segmentation results for subsequent image processing, A total of 1960 wear particle images were collected in the experiment, the average intersection union ratio of the validation set is 0.9299, and the accuracy of the validation set is 0.9799. Secondly, based on the foreground segmentation preprocessing of wear particle images, by using the watered algorithm to obtain the number of particles in each size segment, we obtained the number of magnetic particle grades in three different ranges: 4-38 µm, 39-70 µm, and >70 µm. Thirdly, we proposed a method named multidimensional transformer (MTF) network. Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) are used to obtain the error, and the maintenance strategy is formulated according to the predicted trend. The experimental results show that the predictive performance of our proposed model is better than that of LSTM and TCN. Finally, the online real-time monitoring system triggered three alarms, and at the same time, our offline sampling data analysis was conducted, the accuracy of online real-time monitoring alarms was verified, and the gearbox of the wind turbine was shut down for maintenance and repair.

14.
Int J Mol Sci ; 25(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39337350

RESUMO

The basal cell maintains the airway's respiratory epithelium as the putative resident stem cell. Basal cells are known to self-renew and differentiate into airway ciliated and secretory cells. However, it is not clear if every basal cell functions as a stem cell. To address functional heterogeneity amongst the basal cell population, we developed a novel monoclonal antibody, HLO1-6H5, that identifies a subset of KRT5+ (cytokeratin 5) basal cells. We used HLO1-6H5 and other known basal cell-reactive reagents to isolate viable airway subsets from primary human airway epithelium by Fluorescence Activated Cell Sorting. Isolated primary cell subsets were assessed for the stem cell capabilities of self-renewal and differentiation in the bronchosphere assay, which revealed that bipotent stem cells were, at minimum 3-fold enriched in the HLO1-6H5+ cell subset. Crosslinking-mass spectrometry identified the HLO1-6H5 target as a glycosylated TFRC/CD71 (transferrin receptor) proteoform. The HLO1-6H5 antibody provides a valuable new tool for identifying and isolating a subset of primary human airway basal cells that are substantially enriched for bipotent stem/progenitor cells and reveals TFRC as a defining surface marker for this novel cell subset.


Assuntos
Diferenciação Celular , Células Epiteliais , Queratina-5 , Mucosa Respiratória , Células-Tronco , Humanos , Células-Tronco/citologia , Células-Tronco/metabolismo , Queratina-5/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Receptores da Transferrina/metabolismo , Anticorpos Monoclonais , Antígenos CD/metabolismo , Células Cultivadas , Citometria de Fluxo/métodos , Biomarcadores/metabolismo , Separação Celular/métodos
15.
Molecules ; 29(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39202950

RESUMO

Photoactive artificial nanocatalysts that mimic natural photoenergy systems can yield clean and renewable energy. However, their poor photoabsorption capability and disfavored photogenic electron-hole recombination hinder their production. Herein, we designed two nanocatalysts with various microstructures by combining the tailored self-assembly of the meso-tetra(p-hydroxyphenyl) porphine photosensitizer with the growth of titanium dioxide (TiO2). The porphyrin photoabsorption antenna efficiently extended the absorption range of TiO2 in the visible region, while anatase TiO2 promoted the efficient electron-hole separation of porphyrin. The photo-induced electrons were transferred to the surface of the Pt co-catalyst for the generation of hydrogen via water splitting, and the hole was utilized for the decomposition of methyl orange dye. The hybrid structure showed greatly increased photocatalytic performance compared to the core@shell structure due to massive active sites and increased photo-generated electron output. This controlled assembly regulation provides a new approach for the fabrication of advanced, structure-dependent photocatalysts.

16.
Small ; : e2307252, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054813

RESUMO

Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen-based societies. While non-precious-metal-based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel-vanadium oxide nanosheet arrays grown on porous nickel foam (Ni-V2 O3 /PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni-V2 O3 /PNF delivers 10 mA cm-2 at an overpotential of 54 mV for HER and a mass-specific kinetic current of 19.3 A g-1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron-deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non-precious-metal-based electrocatalysts through the IEF strategy.

17.
Small ; 19(5): e2206196, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36408769

RESUMO

Heterogeneous electrocatalysis typically depends on the surface electronic states of active sites. Modulating the surface charge state of an electrocatalysts can be employed to improve performance. Among all the investigated materials, nickel (Ni)-based catalysts are the only non-noble-metal-based alternatives for both hydrogen oxidation and evolution reactions (HOR and HER) in alkaline electrolyte, while their activities should be further improved because of the unfavorable hydrogen adsorption behavior. Hereto, Ni with exceptional HOR electrocatalytic performance by changing the d-band center by metal oxides interface coupling formed in situ is endowed. The resultant MoO2 coupled Ni heterostructures exhibit an apparent HOR activity, even approaching to that of commercial 20% Pt/C benchmark, but with better long-term stability in alkaline electrolyte. An exceptional HER performance is also achieved by the Ni-MoO2 heterostructures. The experiment results are rationalized by the theoretical calculations, which indicate that coupling MoO2 with Ni results in the downshift of d-band center of Ni, and thus weakens hydrogen adsorption and benefits for hydroxyl adsorption. This concept is further proved by other metal oxides (e.g., CeO2 , V2 O3 , WO3 , Cr2 O3 )-formed Ni-based heterostructures to engineer efficient hydrogen electrocatalysts.

18.
Small ; 19(27): e2300194, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965012

RESUMO

Versatile electrocatalysis at higher current densities for natural seawater splitting to produce hydrogen demands active and robust catalysts to overcome the severe chloride corrosion, competing chlorine evolution, and catalyst poisoning. Hereto, the core-shell-structured heterostructures composed of amorphous NiFe hydroxide layer capped Ni3 S2 nanopyramids which are directly grown on nickel foam skeleton (NiS@LDH/NF) are rationally prepared to regulate cooperatively electronic structure and mass transport for boosting oxygen evolution reaction (OER) performance at larger current densities. The prepared NiS@LDH/NF delivers the anodic current density of 1000 mA cm-2 at the overpotential of 341 mV in 1.0 m KOH seawater. The feasible surface reconstruction of Ni3 S2 -FeNi LDH interfaces improves the chemical stability and corrosion resistance, ensuring the robust electrocatalytic activity in seawater electrolytes for continuous and stable oxygen evolution without any hypochlorite production. Meanwhile, the designed Ni3 S2 nanopyramids coated with FeNi2 P layer (NiS@FeNiP/NF) still exhibit the improved hydrogen evolution reaction (HER) activity in 1.0 m KOH seawater. Furthermore, the NiS@FeNiP/NF||NiS@LDH/NF pair requires cell voltage of 1.636 V to attain 100 mA cm-2 with a 100% Faradaic efficiency, exhibiting tremendous potential for hydrogen production from seawater.

19.
J Transl Med ; 21(1): 183, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894994

RESUMO

BACKGROUND: Apurinic/apyrimidinic endonuclease 1 (APE1) imparts radio-resistance by repairing isolated lesions via the base excision repair (BER) pathway, but whether and how it is involved in the formation and/or repair of DSBs remains mostly unknown. METHODS: Immunoblotting, fluorescent immunostaining, and the Comet assay were used to investigate the effect of APE1 on temporal DSB formation. Chromatin extraction, 53BP1 foci and co-immunoprecipitation, and rescue assays were used to evaluate non-homologous end joining (NHEJ) repair and APE1 effects. Colony formation, micronuclei measurements, flow cytometry, and xenograft models were used to examine the effect of APE1 expression on survival and synergistic lethality. Immunohistochemistry was used to detect APE1 and Artemis expression in cervical tumor tissues. RESULTS: APE1 is upregulated in cervical tumor tissue compared to paired peri-tumor, and elevated APE1 expression is associated with radio-resistance. APE1 mediates resistance to oxidative genotoxic stress by activating NHEJ repair. APE1, via its endonuclease activity, initiates clustered lesion conversion to DSBs (within 1 h), promoting the activation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key kinase in the DNA damage response (DDR) and NHEJ pathway. APE1 then participates in NHEJ repair directly by interacting with DNA- PKcs. Additionally, APE1 promotes NHEJ activity by decreasing the ubiquitination and degradation of Artemis, a nuclease with a critical role in the NHEJ pathway. Overall, APE1 deficiency leads to DSB accumulation at a late phase following oxidative stress (after 24 h), which also triggers activation of Ataxia-telangiectasia mutated (ATM), another key kinase of the DDR. Inhibition of ATM activity significantly promotes synergistic lethality with oxidative stress in APE1-deficient cells and tumors. CONCLUSION: APE1 promotes NHEJ repair by temporally regulating DBS formation and repair following oxidative stress. This knowledge provides new insights into the design of combinatorial therapies and indicates the timing of administration and maintenance of DDR inhibitors for overcoming radio-resistance.


Assuntos
Quebras de DNA de Cadeia Dupla , Neoplasias do Colo do Útero , Humanos , Feminino , Reparo do DNA , Endonucleases/genética , Dano ao DNA , Estresse Oxidativo , DNA/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
20.
J Transl Med ; 21(1): 817, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974228

RESUMO

Anaplastic thyroid carcinoma (ATC) is a deadly disease with a poor prognosis. Thus, there is a pressing need to determine the mechanism of ATC progression. The homeobox D9 (HOXD9) transcription factor has been associated with numerous malignancies but its role in ATC is unclear. In the present study, the carcinogenic potential of HOXD9 in ATC was investigated. We assessed the differential expression of HOXD9 on cell proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT) in ATC and explored the interactions between HOXD9, microRNA-451a (miR-451a), and proteasome 20S subunit beta 8 (PSMB8). In addition, subcutaneous tumorigenesis and lung metastasis in mouse models were established to investigate the role of HOXD9 in ATC progression and metastasis in vivo. HOXD9 expression was enhanced in ATC tissues and cells. Knockdown of HOXD9 inhibited cell proliferation, migration, invasion, and EMT but increased apoptosis in ATC cells. The UCSC Genome Browser and JASPAR database identified HOXD9 as an upstream regulator of miR-451a. The direct binding of miR-451a to the untranslated region (3'-UTR) of PSMB8 was established using a luciferase experiment. Blocking or activation of PI3K by LY294002 or 740Y-P could attenuate the effect of HOXD9 interference or overexpression on ATC progression. The PI3K/AKT signaling pathway was involved in HOXD9-stimulated ATC cell proliferation and EMT. Consistent with in vitro findings, the downregulation of HOXD9 in ATC cells impeded tumor growth and lung metastasis in vivo. Our research suggests that through PI3K/AKT signaling, the HOXD9/miR-451a/PSMB8 axis may have significance in the control of cell proliferation and metastasis in ATC. Thus, HOXD9 could serve as a potential target for the diagnosis of ATC.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA