Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Small ; 18(10): e2105761, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35266313

RESUMO

Rechargeable aqueous zinc-ion batteries (ZIBs) are promising in stationary grid energy storage due to their advantages in safety and cost-effectiveness, and the search for competent cathode materials is one core task in the development of ZIBs. Herein, the authors design a 2D heterostructure combining amorphous vanadium pentoxide and electrochemically produced graphene oxide (EGO) using a fast and scalable spray drying technique. The unique 2D heterostructured xerogel is achieved by controlling the concentration of EGO in the precursor solution. Driven by the improved electrochemical kinetics, the resultant xerogel can deliver an excellent rate capability (334 mAh g-1 at 5 A g-1 ) as well as a high specific capacity (462 mAh g-1 at 0.2 A g-1 ) as the cathode material in ZIB. It is also shown that the coin cell constructed based on spray-dried xerogel can output steady, high energy densities over a broad power density window. This work provides a scalable and cost-effective approach for making high performance electrode materials from cheap sources through existing industrialized materials processing.

2.
Small ; 17(39): e2100241, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34146387

RESUMO

Sb2 S3 is an attractive solar absorber material that has garnered tremendous interest because of its fascinating properties for solar cells including suitable band gap, high absorption coefficient, earth abundance, and excellent stability. Over the past several years, intensive efforts have been made to enhance the photovoltaic efficiencies of Sb2 S3 solar cells using many promising approaches including interfacial engineering, surface passivation, additive engineering, and band-gap engineering of the charge transport layers and active light absorbing Sb2 S3 materials. Recently, doping strategies in Sb2 S3 light absorbers have gained attention as they promise to play important roles in controlling band gap, regulating film morphology, and passivating grain boundaries, and thus resulting in enhanced carrier transport, which is one of the most challenging issues in this cutting-edge research field. In this review, after a brief introduction to Sb2 S3 , an overview of Sb2 S3 solar cells and their fundamental properties are provided. Recent advances in doping strategies in Sb2 S3 thin films and solar cells are then discussed to provide in-depth understanding of the effects of various dopants on the photovoltaic properties of Sb2 S3 materials. In conclusion, the personal perspectives and outlook to the future development of Sb2 S3 solar cells are provided.


Assuntos
Energia Solar , Engenharia , Previsões
3.
Small ; 17(38): e2102218, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34411421

RESUMO

2D-layered materials have attracted increasing attention as low-cost supports for developing active catalysts for the hydrogen evolution reaction (HER). In addition, atomically thin Ti3 C2 Tx (MXene) nanosheets have surface termination groups (Tx : F, O, and OH), which are active sites for effective functionalization. In this work, heteroatom (boron)-doped Ti3 C2 Tx (MXene) nanosheets are developed as an efficient solid support to host ultrasmall ruthenium (Ru) nanoparticles for electrocatalytic HER. The quantum-mechanical first-principles calculations and electrochemical tests reveal that the B-doping onto 2D MXene nanosheets can largely improve the intermediate H* adsorption kinetics and reduce the charge-transfer resistance toward the HER, leading to increased reactivity of active sites and favorable electrode kinetics. Importantly, the newly designed electrocatalyst based on Ru nanoparticles supported on B-doped MXene (Ru@B-Ti3 C2 Tx ) nanosheets shows a remarkable catalytic activity with low overpotentials of 62.9 and 276.9 mV to drive 10 and 100 mA cm-2 , respectively, for the HER, while exhibiting excellent cycling stabilities. Moreover, according to the theoretical calculations, Ru@B-Ti3 C2 Tx exhibits a near-zero value of Gibbs free energy (ΔGH*  = 0.002 eV) for the HER. This work introduces a facile strategy to functionalize MXene for use as a solid support for efficient electrocatalysts.

4.
Med Sci Monit ; 22: 1115-23, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27045330

RESUMO

BACKGROUND: The aim of this study was to investigate potential morphological alterations of gray and white matter in patients with optic neuritis (ON) and their relationship with behavioral performance, using voxel-based morphometry (VBM). MATERIAL/METHODS: Twelve (4 males, 8 females) patients with ON and 12 (4 males, 8 females) age-, sex-, and education-matched healthy controls (HCs) underwent magnetic resonance imaging (MRI). Imaging data were analyzed using two-sample t tests to identify group differences in gray and white matter volume (GMV, WMV). Correlation analysis was used to explore relationships between observed GMV and WMV of different areas and visual evoked potential (VEP) in ON. RESULTS: Compared with HCs, ON patients had: significantly decreased GMV in the left postcentral gyrus, left inferior frontal gyrus, left anterior cingulate, left and right middle frontal gyrus, and right inferior parietal lobule; decreased WMV in the left middle frontal gyrus, right superior frontal gyrus, left precentral gyrus and right inferior parietal lobule; and increased WMV in the left fusiform gyrus and left inferior parietal lobule. VEP latency of the right eye in ON correlated positively with WMV signal value of the left fusiform gyrus (r=0.726, p=0.008), and negatively with GMV signal value of the right inferior parietal lobule (r=-0.611, p=0.035). Duration of ON correlated negatively with WMV signal value of the right superior frontal gyrus (r=-0.662, p=0.019), while best-corrected visual acuity (VA) of the right eye correlated negatively with WMV signal value of the left middle frontal gyrus (r=-0.704, p=0.011). CONCLUSIONS: These results suggest significant brain involvement in ON, which may reflect the underlying pathologic mechanism. Correlational results demonstrate that VEP in ON is closely associated with WMV and GMV atrophy in many brain regions.


Assuntos
Potenciais Evocados Visuais , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos , Neurite Óptica/patologia , Neurite Óptica/fisiopatologia , Substância Branca/patologia , Adulto , Comportamento , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão
6.
Langmuir ; 30(26): 7687-94, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24911116

RESUMO

Self-assembled monolayers (SAMs) on metal and semiconductor surfaces are of interest in electronic devices, molecular and biosensors, and nanostructured surface preparation. Bifunctionalized molecules, where one functional group attaches to the surface while the other remains free for further modification, allow for the rational design of multilayer chemisorbed thin films. In this study, substituted styrenes acted as a model system for SAM formation through an alkene moiety. Substituents ranging from activating to strongly deactivating for aromatic reactions were used to probe the effect of the electronic properties of functionalizing molecules on the rate of SAM formation. Substituted styrene SAMs were formed on hydrogen-terminated p-type Si(100) and n-type Si(111) via sonochemical functionalization. Monolayers were characterized via ellipsometry, IR spectroscopy, contact angle goniometry, and X-ray photoelectron spectroscopy (XPS). Initial rates of reaction for molecules that selectively attached through the alkene were further studied. A linear relationship was observed between the initial rates of surface functionalization and the substituent electron donating/withdrawing ability for the substituted styrenes, as described by their respective Hammett constants. This study provides precedent for applying well quantified homogeneous chemical reaction relationships to reactions at the solid-liquid interface.

7.
Diabetes Metab Syndr Obes ; 17: 2809-2822, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081370

RESUMO

Background: Previous imaging studies have demonstrated that diabetic retinopathy (DR) is linked to structural and functional abnormalities in the brain. However, the extent to which DR patients exhibit abnormal neurovascular coupling remains largely unknown. Methods: Thirty-one patients with DR and 31 sex- and age-matched healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI) to calculate functional connectivity strength (FCS) and arterial spin-labeling imaging (ASL) to calculate cerebral blood flow (CBF). The study compared CBF-FCS coupling across the entire grey matter and CBF/FCS ratios (representing blood supply per unit of connectivity strength) per voxel between the two groups. Additionally, a support vector machine (SVM) method was employed to differentiate between diabetic retinopathy (DR) patients and healthy controls (HC). Results: In DRpatients compared to healthy controls, there was a reduction in CBF-FCS coupling across the entire grey matter. Specifically, DR patients exhibited elevated CBF/FCS ratios primarily in the primary visual cortex, including the right calcarine fissure and surrounding cortex. On the other hand, reduced CBF/FCS ratios were mainly observed in premotor and supplementary motor areas, including the left middle frontal gyrus. Conclusion: An elevated CBF/FCS ratio suggests that patients with DR may have a reduced volume of gray matter in the brain. A decrease in its ratio indicates a decrease in regional CBF in patients with DR. These findings suggest that neurovascular decoupling in the visual cortex, as well as in the supplementary motor and frontal gyrus, may represent a neuropathological mechanism in diabetic retinopathy.

8.
Clin Ophthalmol ; 18: 659-670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468914

RESUMO

Objective: Primary angle-closure glaucoma (PACG) is a globally prevalent, irreversible eye disease leading to blindness. Previous neuroimaging studies demonstrated that PACG patients were associated with gray matter function changes. However, whether the white matter(WM) function changes in PACG patients remains unknown. The purpose of the study is to investigate WM function changes in the PACG patients. Methods: In total, 40 PACG patients and 40 well-matched HCs participated in our study and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans. We compared between-group differences between PACG patients and HC in the WM function using amplitude of low-frequency fluctuations (ALFF). In addition, the SVM method was applied to the construction of the PACG classification model. Results: Compared with the HC group, ALFF was attenuated in right posterior thalamic radiation (include optic radiation), splenium of corpus callosum, and left tapetum in the PACG group, the results are statistically significant (GRF correction, voxel-level P < 0.001, cluster-level P < 0.05). Furthermore, the SVM classification had an accuracy of 80.0% and an area under the curve (AUC) of 0.86 for distinguishing patients with PACG from HC. Conclusion: The findings of our study uncover abnormal WM functional alterations in PACG patients and mainly involves vision-related regions. These findings provide new insights into widespread brain damage in PACG from an alternative WM functional perspective.

9.
J Colloid Interface Sci ; 665: 1065-1078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579389

RESUMO

Reactive oxygen species (ROS)-centered chemodynamic therapy (CDT) holds significant potential for tumor-specific treatment. However, insufficient endogenous H2O2 and extra glutathione within tumor microenvironment (TME) severely deteriorate the CDT's effectiveness. Herein, rich-Zn-Co3O4/N-doped porous carbon (Zn-Co3O4/NC) was fabricated by two-step pyrolysis, and applied to build high-efficiency nano-platform for synergistic cancer therapy upon combination with glucose oxidase (GOx), labeled Zn-Co3O4/NC-GOx for clarity. Specifically, the multiple enzyme-like activities of the Zn-Co3O4/NC were scrutinously investigated, including peroxidase-like activity to convert H2O2 to O2∙-, catalase-like activity to decompose H2O2 into O2, and oxidase-like activity to transform O2 to O2∙-, which achieved the CDT through the catalytic cascade reaction. Simultaneously, GOx reacted with intracellular glucose to produce gluconic acid and H2O2, realizing starvation therapy. In the acidic TME, the Zn-Co3O4/NC-GOx rapidly caused intracellular Zn2+ pool overload and disrupted cellular homeostasis for ion-intervention therapy. Additionally, the Zn-Co3O4/NC exhibited glutathione peroxidase-like activity, which consumed glutathione in tumor cells and reduced the ROS consumption for ferroptosis. The tumor treatments offer some constructive insights into the nanozyme-mediated catalytic medicine, coupled by avoiding the TME limitations.


Assuntos
Cobalto , Peróxido de Hidrogênio , Neoplasias , Óxidos , Humanos , Porosidade , Espécies Reativas de Oxigênio , Glucose Oxidase , Imidazóis , Carbono , Glutationa , Zinco , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
10.
Adv Sci (Weinh) ; : e2403182, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033543

RESUMO

Bulk black phosphorous (bP) exhibits excellent infrared (IR) optoelectronic properties, but most reported bP IR photodetectors are fabricated from single exfoliated flakes with lateral sizes of < 100 µm. Here, scalable thin films of bP suitable for IR photodetector arrays are realized through a tailored solution-deposition method. The properties of the bP film and their protective capping layers are optimized to fabricate bP IR photoconductors exhibiting specific detectivities up to 4.0 × 108 cm Hz1/2 W-1 with fast 30/60 µs rise/fall times under λ = 2.2 µm illumination. The scalability of the bP thin film fabrication is demonstrated by fabricating a linear array of 25 bP photodetectors and obtaining 25 × 25 pixel IR images at ≈203 ppi with good spatial fidelity. This research demonstrates a commercially viable method of fabricating scalable bP thin films for optoelectronic devices including room temperature-operable IR photodetector arrays.

11.
Front Neurosci ; 17: 1097291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793539

RESUMO

Purpose: A common ocular manifestation, macular edema (ME) is the primary cause of visual deterioration. In this study, an artificial intelligence method based on multi-feature fusion was introduced to enable automatic ME classification on spectral-domain optical coherence tomography (SD-OCT) images, to provide a convenient method of clinical diagnosis. Methods: First, 1,213 two-dimensional (2D) cross-sectional OCT images of ME were collected from the Jiangxi Provincial People's Hospital between 2016 and 2021. According to OCT reports of senior ophthalmologists, there were 300 images with diabetic (DME), 303 images with age-related macular degeneration (AMD), 304 images with retinal-vein occlusion (RVO), and 306 images with central serous chorioretinopathy (CSC). Then, traditional omics features of the images were extracted based on the first-order statistics, shape, size, and texture. After extraction by the alexnet, inception_v3, resnet34, and vgg13 models and selected by dimensionality reduction using principal components analysis (PCA), the deep-learning features were fused. Next, the gradient-weighted class-activation map (Grad-CAM) was used to visualize the-deep-learning process. Finally, the fusion features set, which was fused from the traditional omics features and the deep-fusion features, was used to establish the final classification models. The performance of the final models was evaluated by accuracy, confusion matrix, and the receiver operating characteristic (ROC) curve. Results: Compared with other classification models, the performance of the support vector machine (SVM) model was best, with an accuracy of 93.8%. The area under curves AUC of micro- and macro-averages were 99%, and the AUC of the AMD, DME, RVO, and CSC groups were 100, 99, 98, and 100%, respectively. Conclusion: The artificial intelligence model in this study could be used to classify DME, AME, RVO, and CSC accurately from SD-OCT images.

12.
Front Neurosci ; 17: 1156990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090795

RESUMO

Purpose: The purpose of this study was to study in retina thickness changes in myopic mice using optical coherence tomography (OCT). Methods: There were 18 mice in the form-deprivation myopia (FDM) group,in which the left eye was not treated as a control;18 untreated mice served as a normal control group. The diopter of all mice was measured 21 days after birth (P21), before form deprivation. After 4 weeks of form deprivation (P49), the refraction, fundus, and retinal sublayer thickness of all mice were measured. Results: After 4 weeks of form deprivation, the refractive power of the right eye in the FDM group was significantly higher than that in the left eye (p < 0.05). There was no significant change in the refractive power of the left eye in the FDM group compared with the normal control group. The retina, nerve fiber layer (NFL), inner nuclear layer (INL), and outer nuclear layer (ONL) in the right eye of the FDM group were significantly thinner than those of both the FDM and control groups (p < 0.05). There was no significant change in photoreceptor (PR). Conclusion: Our study highlights that the myopic mice have decreased R thickness, which might reflect the potential pathological mechanism of myopia.

13.
Neuroreport ; 34(6): 309-314, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966810

RESUMO

OBJECTIVES: Previous studies have demonstrated that diabetic retinopathy is associated with cognitive impairment. This study aimed to investigate the intrinsic functional connectivity pattern within the default mode network (DMN) and its associations with cognitive impairment in diabetic retinopathy patients using resting-state functional MRI (rs-fMRI). METHODS: A total of 34 diabetic retinopathy patients and 37 healthy controls were recruited for rs-fMRI scanning. Both groups were age, gender, and education level matched. The posterior cingulate cortex (PCC) was chosen as the region of interest for detecting functional connectivity changes. RESULTS: Compared with the healthy control group, diabetic retinopathy patients showed increased functional connectivity between PCC and left medial superior frontal gyrus and increased functional connectivity between PCC and right precuneus. CONCLUSION: Our study highlights that diabetic retinopathy patients show enhanced functional connectivity within DMN, suggesting that a compensatory increase of neural activity might occur in DMN, which offers new insight into the potential neural mechanism of cognitive impairment in diabetic retinopathy patients.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Encéfalo/diagnóstico por imagem , Rede de Modo Padrão , Retinopatia Diabética/diagnóstico por imagem , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Mapeamento Encefálico
14.
Nanomicro Lett ; 16(1): 23, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985523

RESUMO

This comprehensive review provides a deep exploration of the unique roles of single atom catalysts (SACs) in photocatalytic hydrogen peroxide (H2O2) production. SACs offer multiple benefits over traditional catalysts such as improved efficiency, selectivity, and flexibility due to their distinct electronic structure and unique properties. The review discusses the critical elements in the design of SACs, including the choice of metal atom, host material, and coordination environment, and how these elements impact the catalytic activity. The role of single atoms in photocatalytic H2O2 production is also analysed, focusing on enhancing light absorption and charge generation, improving the migration and separation of charge carriers, and lowering the energy barrier of adsorption and activation of reactants. Despite these advantages, several challenges, including H2O2 decomposition, stability of SACs, unclear mechanism, and low selectivity, need to be overcome. Looking towards the future, the review suggests promising research directions such as direct utilization of H2O2, high-throughput synthesis and screening, the creation of dual active sites, and employing density functional theory for investigating the mechanisms of SACs in H2O2 photosynthesis. This review provides valuable insights into the potential of single atom catalysts for advancing the field of photocatalytic H2O2 production.

15.
Adv Sci (Weinh) ; 10(24): e2301056, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37334882

RESUMO

High energy and power density alkali-ion (i.e., Li+ , Na+ , and K+ ) batteries (AIBs), especially lithium-ion batteries (LIBs), are being ubiquitously used for both large- and small-scale energy storage, and powering electric vehicles and electronics. However, the increasing LIB-triggered fires due to thermal runaways have continued to cause significant injuries and casualties as well as enormous economic losses. For this reason, to date, great efforts have been made to create reliable fire-safe AIBs through advanced materials design, thermal management, and fire safety characterization. In this review, the recent progress is highlighted in the battery design for better thermal stability and electrochemical performance, and state-of-the-art fire safety evaluation methods. The key challenges are also presented associated with the existing materials design, thermal management, and fire safety evaluation of AIBs. Future research opportunities are also proposed for the creation of next-generation fire-safe batteries to ensure their reliability in practical applications.

16.
Adv Mater ; 35(25): e2300109, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37009654

RESUMO

Maintaining a steady affinity between gallium-based liquid metals (LM) and polymer binders, particularly under continuous mechanical deformation, such as extrusion-based 3D printing or plating/stripping of Zinc ion (Zn2+ ), is very challenging. Here, an LM-initialized polyacrylamide-hemicellulose/EGaIn microdroplets hydrogel is used as a multifunctional ink to 3D-print self-standing scaffolds and anode hosts for Zn-ion batteries. The LM microdroplets initiate acrylamide polymerization without additional initiators and cross-linkers, forming a double-covalent hydrogen-bonded network. The hydrogel acts as a framework for stress dissipation, enabling recovery from structural damage due to the cyclic plating/stripping of Zn2+ . The LM-microdroplet-initialized polymerization with hemicelluloses can facilitate the production of 3D printable inks for energy storage devices.

17.
J Am Chem Soc ; 134(43): 17896-9, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23075388

RESUMO

An all electrochemical route to functionalized graphene directly from a graphite electrode is described herein obviating the need for defect inducing oxidative or prolonged sonication treatments. Enhanced electrochemical expansion of graphite is achieved by sequential treatment, beginning with the established method of expansion by electrolysis in a Li(+) containing electrolyte, and then with the much larger tetra-n-butylammonium. The result is a hyperexpansion of the graphite basal planes. As a demonstration of the utility of this method, we successfully performed a subsequent in situ electrochemical diazonium functionalization of the hyperexpanded graphite basal planes to give functional graphene sheets. This potential controlled process is more effective than chemical processes and also provides a means of controlling the degree of functionalization. We have further demonstrated that the functionalized graphene could be converted to a pristine low defect form via laser ablation of the funtional groups. As a result, this method presents a potentially scalable approach for graphene circuit patterning.

18.
J Chem Phys ; 137(17): 174703, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23145738

RESUMO

The siloxane film derived from the 30-carbon chain triacontyltrichlorosilane (TCTS) is studied as an anti-relaxation coating for atomic vapor cells. The longitudinal spin relaxation lifetime of optically pumped potassium atoms in the presence of TCTS is measured and the average number of non-relaxing atom-wall collisions, or bounces, enabled by the coated surface is determined. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) of TCTS were performed to investigate changes in chemical states and surface morphology of TCTS arising from K atom deposition on the film surface. TCTS was found to give approximately 530 bounces. Following lifetime measurements, K2p signals were clearly observed in XPS spectra. AFM images display non-preferential K deposition on the TCTS surface, however additional AFM studies with a TCTS surface exposed to Rb atoms show deposition occurs along surface defects. In agreement, Rb is found to preferentially deposit along the step edges of an 18-carbon chain monolayer film derived from 1-Octadecene. Finally, AFM indicates a much smoother surface for a tetracontane coating relative to TCTS. The importance of siloxane surface morphology versus film thickness with respect to coating performance is discussed.

19.
Front Hum Neurosci ; 16: 910669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664342

RESUMO

Purpose: The primary angle-closure glaucoma (PACG) is an irreversible blinding eye disease in the world. Previous neuroimaging studies demonstrated that PACG patients were associated with cerebral changes. However, the effect of optic atrophy on local and remote brain functional connectivity in PACG patients remains unknown. Materials and Methods: In total, 23 patients with PACG and 23 well-matched Health Controls (HCs) were enrolled in our study and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. The regional homogeneity (ReHo) method and functional connectivity (FC) method were used to evaluate the local and remote brain functional connectivity. Moreover, support vector machine (SVM) method was applied to constructing PACG classification model. Results: Compared with the HC, PACG patients showed increased ReHo values in right cerebellum (CER)_8, left CER_4-5, and right CER_8. In contrast, PACG patients showed decreased ReHo values in the bilateral lingual gyrus (LING)/calcarine (CAL)/superior occipital gyrus (SOG) and right postcentral gyrus (PostCG). The ReHo value exhibited an accuracy of 91.30% and area under curve (AUC) of 0.95 for distinguishing the PACG patients from HC. Conclusion: Our study demonstrated that the PACG patients showed abnormal ReHo value in the cerebellum, visual cortex, and supplementary motor area, which might be reflect the neurological mechanisms underlying vision loss and eye pain in PACG patients. Moreover, the ReHo values can be used as a useful biomarker for distinguishing the PACG patients from HCs.

20.
Neuroreport ; 33(6): 259-265, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35383657

RESUMO

BACKGROUND: Comitant exotropia (CE) is a common eye disease with abnormal eye movement, whereas altered synchronous neural activity in CE patients is poorly understood. The purpose of our study was to investigate local to remote functional connectivity of blood oxygen level-dependent (BOLD) signals changes in CE patients. MATERIAL AND METHODS: Thirty-four patients and thirty-four healthy controls (HCs) underwent resting-state MRI scans. The ReHo and FC method was applied to investigate the local to remote functional connectivity changes in CE patients. RESULTS: Compared to the HC group, CE patients showed significant increased ReHo values in the left cerebellar_crus2 and left middle frontal gyrus. Meanwhile, CE patients showed significant decreased ReHo values in the right middle temporal gyrus, left postcentral gyrus and right angular. Moreover, CE patients showed an increased FC between the cerebellar network, sensorimotor network (SMN) and default-mode network (DMN). The support vector machine (SVM) classification was up to a total accuracy of 94.12%. The AUC of the classification model was 0.99 on the basis of ReHo map. CONCLUSION: Our result highlights that CE patients had abnormal local to remote functional connectivity in the cerebellar network, SMN, DMN, which might indicate the neural mechanism of eye movements and stereo vision dysfunction in CE patients. Moreover, the SVM algorithm reveals ReHo maps as a potential biomarker for predicting clinical outcomes in CE patients.


Assuntos
Exotropia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Exotropia/diagnóstico por imagem , Lobo Frontal , Humanos , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA