Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1012061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416782

RESUMO

Alternative polyadenylation (APA) is a widespread mechanism of gene regulation that generates mRNA isoforms with alternative 3' untranslated regions (3' UTRs). Our previous study has revealed the global 3' UTR shortening of host mRNAs through APA upon viral infection. However, how the dynamic changes in the APA landscape occur upon viral infection remains largely unknown. Here we further found that, the reduced protein abundance of CPSF6, one of the core 3' processing factors, promotes the usage of proximal poly(A) sites (pPASs) of many immune related genes in macrophages and fibroblasts upon viral infection. Shortening of the 3' UTR of these transcripts may improve their mRNA stability and translation efficiency, leading to the promotion of type I IFN (IFN-I) signalling-based antiviral immune responses. In addition, dysregulated expression of CPSF6 is also observed in many immune related physiological and pathological conditions, especially in various infections and cancers. Thus, the global APA dynamics of immune genes regulated by CPSF6, can fine-tune the antiviral response as well as the responses to other cellular stresses to maintain the tissue homeostasis, which may represent a novel regulatory mechanism for antiviral immunity.


Assuntos
Poliadenilação , Viroses , Fatores de Poliadenilação e Clivagem de mRNA , Humanos , Regiões 3' não Traduzidas/genética , Regulação para Baixo , Imunidade/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Viroses/genética , Camundongos , Animais
2.
Phys Chem Chem Phys ; 26(8): 7042-7048, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345537

RESUMO

Alkaline deep eutectic solvents (DESs) have been widely employed across diverse fields. A comprehensive understanding of the alkalinity data is imperative for the comprehension of their performance. However, the current range of techniques for quantifying alkalinity is constrained. In this investigation, we formulated a series of alkaline DESs and assessed their basicity properties through a comprehensive methodology of Hammett functions alongside 1H NMR analysis. A correlation was established between the composition, structure and alkalinity of solvents. Furthermore, a strong linear correlation was observed between the Hammett basicity (H-) of solvents and initial CO2 adsorption rate. Machine learning techniques were employed to predict the significant impact of alkaline functional components on alkalinity levels and CO2 capture capacity. This study offers valuable insights into the design, synthesis and structure-function relationship of alkaline DESs.

3.
Arch Oral Biol ; 161: 105912, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38382164

RESUMO

OBJECTIVES: D-alanine is a residue of the backbone structure of Type Ⅰ Lipoteichoic acid (LTA), which is a virulence factor in inflammation caused by gram-positive bacteria. However, the role of D-alanine in infectious bone destruction has not been investigated. We aimed to explore the role of D-alanine in the proliferation, apoptosis, and differentiation of osteoclasts. DESIGN: Mouse bone marrow-derived macrophages (BMMs) were isolated as osteoclast precursors and stimulated with D-alanine. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry, respectively. The formation of osteoclasts morphologically observed by tartrate-resistant acid phosphatase staining (TRAP) and immunofluorescence staining. The expressions of osteoclastogenic genes were measured by real-time RT-PCR. The protein expressions of osteoclastogenic markers, p38, and ERK1/2 MAPK signalling were measured by western blot. The expression level of soluble Sema4D was detected via enzyme-linked immunosorbent assay (ELISA). RESULTS: The cell proliferation of BMMs was significantly inhibited by D-alanine in a dose-dependent manner. Apoptosis of BMMs was markedly activated with the stimulation of D-alanine. The differentiation of BMMs into osteoclasts was significantly inhibited by D-alanine, and the gene and protein expressions of NFATc1, c-Fos, and Blimp decreased. Western blot showed that D-alanine inhibited the phosphorylated p38 and ERK1/2 signalling pathways of BMMs. Moreover, the expression level of soluble Sema4D significantly decreased in the supernatant of BMMs due to the D-alanine intervention. CONCLUSION: D-alanine plays a pivotal role in the inhibition of RANKL-induced osteoclastogenesis and might become a potential therapeutic drug for bone-resorptive diseases.


Assuntos
Reabsorção Óssea , Osteogênese , Animais , Camundongos , Sistema de Sinalização das MAP Quinases , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Macrófagos/metabolismo , Osteoclastos , Diferenciação Celular , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/metabolismo , Reabsorção Óssea/metabolismo , Fatores de Transcrição NFATC/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA