Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 51(3): 1666-1677, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31425137

RESUMO

Most existing robust principal component analysis (PCA) and 2-D PCA (2DPCA) methods involving the l2 -norm can mitigate the sensitivity to outliers in the domains of image analysis and pattern recognition. However, existing approaches neither preserve the structural information of data in the optimization objective nor have the robustness of generalized performance. To address the above problems, we propose two novel center-weight-based models, namely, centered PCA (C-PCA) and generalized centered 2DPCA with l2,p -norm minimization (GC-2DPCA), which are developed for vector- and matrix-based data, respectively. The C-PCA can preserve the structural information of data by measuring the similarity between the data points and can also retain the PCA's original desirable properties such as the rotational invariance. Furthermore, GC-2DPCA can learn efficient and robust projection matrices to suppress outliers by utilizing the variations between each row of the image matrix and employing power p of l2,1 -norm. We also propose an efficient algorithm to solve the C-PCA model and an iterative optimization algorithm to solve the GC-2DPCA model, and we theoretically analyze their convergence properties. Experiments on three public databases show that our models yield significant improvements over the state-of-the-art PCA and 2DPCA approaches.

2.
ChemSusChem ; 13(19): 5248-5255, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32702154

RESUMO

The preparation of carbonyl compounds by the aerobic oxidative cleavage of C-C bonds in 1,2-diols under mild reaction conditions is a very significant reaction and is widely employed in various scenarios. Avoiding the use of harmful stoichiometric oxidants and adopting a greener chemical process remain a challenge for this reaction to date. In this manuscript, a heterogeneous metal-free photocatalytic strategy without any additive was developed for aerobic oxidative cleavage of C-C bonds in 1,2-diols at ambient conditions with visible light. The reaction mechanism was further studied through a series of control experiments and density functional theory (DFT) calculations. In addition, the catalytic system showed a broad substrates scope, including aliphatic (linear or cyclic) 1,2-diols, benzylic, alkenyl 1,2-diols, and α-hydroxy acids (such as lactic acid). Thus, this strategy could serve as a method for the transformation of 1,2-diols to corresponding carbonyl compounds by the aerobic oxidative cleavage of C-C bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA