Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38391016

RESUMO

We construct correlation-consistent effective core potentials (ccECPs) for a selected set of heavy atoms and f elements that are currently of significant interest in materials and chemical applications, including Y, Zr, Nb, Rh, Ta, Re, Pt, Gd, and Tb. As is customary, ccECPs consist of spin-orbit (SO) averaged relativistic effective potential (AREP) and effective SO terms. For the AREP part, our constructions are carried out within a relativistic coupled-cluster framework while also taking into account objective function one-particle characteristics for improved convergence in optimizations. The transferability is adjusted using binding curves of hydride and oxide molecules. We address the difficulties encountered with f elements, such as the presence of large cores and multiple near-degeneracies of excited levels. For these elements, we construct ccECPs with core-valence partitioning that includes 4f subshell in the valence space. The developed ccECPs achieve an excellent balance between accuracy, size of the valence space, and transferability and are also suitable to be used in plane wave codes with reasonable energy cutoffs.

2.
J Chem Phys ; 157(17): 174307, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347683

RESUMO

We construct a new modification of correlation consistent effective core potentials (ccECPs) for late 3d elements Cr-Zn with Ne-core that are adapted for efficiency and low energy cut-offs in plane wave calculations. The decrease in accuracy is rather minor, so that the constructions are in the same overall accuracy class as the original ccECPs. The resulting new constructions work with energy cut-offs at or below ≈400 Ry and, thus, make calculations of large systems with transition metals feasible for plane wave codes. We also provide the basic benchmarks for atomic spectra and molecular tests of this modified option that we denote as ccECP-soft.

3.
J Chem Phys ; 157(5): 054101, 2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35933201

RESUMO

We introduce new correlation consistent effective core potentials (ccECPs) for the elements I, Te, Bi, Ag, Au, Pd, Ir, Mo, and W with 4d, 5d, 6s, and 6p valence spaces. These ccECPs are given as a sum of spin-orbit averaged relativistic effective potential (AREP) and effective spin-orbit (SO) terms. The construction involves several steps with increasing refinements from more simple to fully correlated methods. The optimizations are carried out with objective functions that include weighted many-body atomic spectra, norm-conservation criteria, and SO splittings. Transferability tests involve molecular binding curves of corresponding hydride and oxide dimers. The constructed ccECPs are systematically better and in a few cases on par with previous effective core potential (ECP) tables on all tested criteria and provide a significant increase in accuracy for valence-only calculations with these elements. Our study confirms the importance of the AREP part in determining the overall quality of the ECP even in the presence of sizable spin-orbit effects. The subsequent quantum Monte Carlo calculations point out the importance of accurate trial wave functions that, in some cases (mid-series transition elements), require treatment well beyond a single-reference.

4.
J Mater Sci Mater Med ; 33(10): 66, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36138160

RESUMO

Polydimethylsiloxane (PDMS) is a commonly used insulation/packaging material for implantable neural electrodes. Nevertheless, the PDMS-initiated tissue response would lead to the deterioration of the electrode performances post-implantation, owing to its intrinsic hydrophobic and cell-repellent surface. The conventional physical coatings by hydrophilic hydrogels or bioactive molecules are unable to maintain during the long-term implantation due to their low stability by physical adhesion. In this work, we first anchor both hydrophilic polyethylene glycol (PEG) and bioactive molecule poly-L-lysine (PLL) on the PDMS surface by chemical coupling to change the PDMS surface from hydrophobic and cell-repellent to hydrophilic and cell-adhesive. XPS tests indicate the chemically coupled modification layers are stable on the PDMS surface after experiencing a harsh rinse process. Contact angle measurements show that the use of PEG 600 with the moderate molecular weight results in the highest hydrophilicity for the resulting PDMS-PEG-PLL. PC12 cell evaluation results exhibit that the PDMS-PEG-PLL with PEG 600 leads to significantly larger cell adhesion area, more neurite number, and longer neurite length than the PDMS. The PDMS-PEG-PLL with PEG 600 featuring stable modification layers, high hydrophilicity, and superior cell affinity has great potential in stabilizing the neural electrode-tissue interface for the long-term implantation. Graphical abstract.


Assuntos
Dimetilpolisiloxanos , Polilisina , Dimetilpolisiloxanos/química , Hidrogéis , Polietilenoglicóis/química , Polímeros , Propriedades de Superfície
5.
J Neural Eng ; 20(2)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36863014

RESUMO

Objective.Reliable and user-friendly electrodes can continuously and real-time capture the electroencephalography (EEG) signals, which is essential for real-life brain-computer interfaces (BCIs). This study develops a flexible, durable, and low-contact-impedance polyvinyl alcohol/polyacrylamide double-network hydrogel (PVA/PAM DNH)-based semi-dry electrode for robust EEG recording at hairy scalp.Approach.The PVA/PAM DNHs are developed using a cyclic freeze-thaw strategy and used as a saline reservoir for semi-dry electrodes. The PVA/PAM DNHs steadily deliver trace amounts of saline onto the scalp, enabling low and stable electrode-scalp impedance. The hydrogel also conforms well to the wet scalp, stabilizing the electrode-scalp interface. The feasibility of the real-life BCIs is validated by conducting four classic BCI paradigms on 16 participants.Main results.The results show that the PVA/PAM DNHs with 7.5 wt% PVA achieve a satisfactory trade-off between the saline load-unloading capacity and the compressive strength. The proposed semi-dry electrode exhibits a low contact impedance (18 ± 8.9 kΩ at 10 Hz), a small offset potential (0.46 mV), and negligible potential drift (1.5 ± 0.4µV min-1). The temporal cross-correlation between the semi-dry and wet electrodes is 0.91, and the spectral coherence is higher than 0.90 at frequencies below 45 Hz. Furthermore, no significant differences are present in BCI classification accuracy between these two typical electrodes.Significance.Based on the durability, rapid setup, wear-comfort, and robust signals of the developed hydrogel, PVA/PAM DNH-based semi-dry electrodes are a promising alternative to wet electrodes in real-life BCIs.


Assuntos
Interfaces Cérebro-Computador , Couro Cabeludo , Humanos , Álcool de Polivinil , Eletroencefalografia/métodos , Hidrogéis , Eletrodos
6.
Neural Regen Res ; 10(12): 2048-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26889197

RESUMO

Neural electrodes, the core component of neural prostheses, are usually encapsulated in polydimethylsiloxane (PDMS). However, PDMS can generate a tissue response after implantation. Based on the physicochemical properties and excellent biocompatibility of polyurethane (PU) and poly(vinyl alcohol) (PVA) when used as coating materials, we synthesized PU/PVA hydrogel coatings and coated the surface of PDMS using plasma treatment, and the cytocompatibility to rat pheochromocytoma (PC12) cells was assessed. Protein adsorption tests indicated that the amount of protein adsorption onto the PDMS substrate was reduced by 92% after coating with the hydrogel. Moreover, the PC12 cells on the PU/PVA-coated PDMS showed higher cell density and longer and more numerous neurites than those on the uncoated PDMS. These results indicate that the PU/PVA hydrogel is cytocompatible and a promising coating material for neural electrodes to improve their biocompatibility.

7.
Acta Biomater ; 9(5): 6439-49, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23402765

RESUMO

With the purpose of improving the stability of microelectrodes under continuous high charge density stimulation, which is required for neural prostheses applications such as visual prostheses, multiwall carbon nanotube (MWCNT)-doped poly(3,4-ethylenedioxythiophene) (PEDOT) composite films were coated onto a platinum microelectrode by electrochemical polymerization. Galvanostatically polymerized PEDOT/MWCNT films demonstrated superior characteristics compared to polystyrene sulfonate doping and potentiostatic polymerization, including a three-dimensional cone morphology and enhanced electrochemical performance (the safe charge injection limit reached 6.2 mC cm(-2) for cathodic-first pulses). Most important of all, the improved stability of the coatings has been revealed through stimulation for 96 h using 3.0 mCc m(-2) current pulses in bicarbonate- and phosphate-buffered saline solution. Cell assays revealed that PEDOT/MWCNT films could promote the adhesion and neurite outgrowth of rat pheochromocytoma cells. Finally, platinum wires coated with PEDOT/MWCNT films were implanted into rat cortex for 6 weeks for histological evaluation. Glial fibrillary acidic protein and neuronal nuclei staining revealed that the films elicit a lower tissue response compared to platinum implants. These results suggest that the galvanostatically polymerized PEDOT/MWCNT films can improve the stability of stimulation microelectrodes and that PEDOT/MWCNT is an excellent candidate material for electrode coating for neural prostheses applications.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Microeletrodos , Nanotubos de Carbono , Próteses Neurais , Polímeros/química , Animais , Masculino , Ratos , Ratos Sprague-Dawley
8.
Acta Biomater ; 8(6): 2233-42, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22406507

RESUMO

The instability of the interface between chronically implanted neuroprosthetic devices and neural tissue is a major obstacle to the long-term use of such devices in clinical practice. In this study, we investigate the feasibility of polyethylene glycol (PEG)-containing polyurethane (PU) hydrogel as coatings for polydimethylsiloxane (PDMS)-based neural electrodes in order to achieve a stable neural interface. The influence of PU hydrogel coatings on electrode electrochemical behaviour was investigated. Importantly, the biocompatibility of PU hydrogel coatings was evaluated in vitro and in vivo. Changes in the electrochemical impedance of microelectrodes with PU coatings were negligible. The amount of protein adsorption on the PDMS substrate was reduced by 93% after coating. Rat pheochromocytoma (PC12) cells exhibited more and longer neurites on PU films than on PDMS substrates. Furthermore, PDMS implants with (n=10) and without (n=8) PU coatings were implanted into the cortex of rats and the tissue response to the implants was evaluated 6 weeks post-implantation. GFAP staining for astrocytes and NeuN staining for neurons revealed that PU coatings attenuated glial scarring and reduced the neuronal cell loss around the implants. All of these findings suggest that PU hydrogel coating is feasible and favourable for neural electrode applications.


Assuntos
Materiais Biocompatíveis , Córtex Cerebral/fisiologia , Microeletrodos , Polietilenoglicóis , Poliuretanos , Animais , Imuno-Histoquímica , Masculino , Células PC12 , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Brain Res Bull ; 89(3-4): 124-32, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22850246

RESUMO

In this study, we investigated whether fully implantable CES with low current density and varying low-frequency burst impulse train enhances functional recovery and promotes brain remodeling in both the ipsilesional and contralesional cortex. Adult rats received occlusion of the right middle cerebral artery for 120min. One week after ischemia, electrodes were implanted to rats with CES lasting 2 weeks followed by 4-week observation period. After 2-week stimulation and 4-week observation period, body weight (BW) of the rats in CES group was higher than that in no stimulation (NS) group. Limb placement test, foot-fault test and beam walking test demonstrate that CES significantly enhanced functional recovery. Immunohistochemical study has shown that CES enhanced angiogenesis and dendritic sprouting, and suppressed inflammatory response in the ischemic cortex. CES also promoted dendritic sprouting and suppressed inflammatory response in the contralesional cortex. These results suggest the stimulation protocol is safe, and greatly improves functional recovery and brain remodeling in the 4 weeks following 2 weeks stimulation.


Assuntos
Córtex Cerebral/fisiologia , Estimulação Encefálica Profunda/métodos , Infarto da Artéria Cerebral Média , Recuperação de Função Fisiológica/fisiologia , Análise de Variância , Animais , Biofísica , Peso Corporal , Infarto Encefálico/etiologia , Modelos Animais de Doenças , Eletrodos Implantados , Extremidades/fisiopatologia , Lateralidade Funcional , Proteína Glial Fibrilar Ácida/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/terapia , Imageamento por Ressonância Magnética , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA