Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Plant Physiol ; 193(2): 1016-1035, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37440715

RESUMO

Belonging to Rosaceae, red raspberry (Rubus idaeus) and wild strawberry (Fragaria vesca) are closely related species with distinct fruit types. While the numerous ovaries become the juicy drupelet fruits in raspberry, their strawberry counterparts become dry and tasteless achenes. In contrast, while the strawberry receptacle, the stem tip, enlarges to become a red fruit, the raspberry receptacle shrinks and dries. The distinct fruit-forming ability of homologous organs in these 2 species allows us to investigate fruit type determination. We assembled and annotated the genome of red raspberry (R. idaeus) and characterized its fruit development morphologically and physiologically. Subsequently, transcriptomes of dissected and staged raspberry fruit tissues were compared to those of strawberry from a prior study. Class B MADS box gene expression was negatively associated with fruit-forming ability, which suggested a conserved inhibitory role of class B heterodimers, PISTILLATA/TM6 or PISTILLATA/APETALA3, for fruit formation. Additionally, the inability of strawberry ovaries to develop into fruit flesh was associated with highly expressed lignification genes and extensive lignification of the ovary pericarp. Finally, coexpressed gene clusters preferentially expressed in the dry strawberry achenes were enriched in "cell wall biosynthesis" and "ABA signaling," while coexpressed clusters preferentially expressed in the fleshy raspberry drupelets were enriched in "protein translation." Our work provides extensive genomic resources as well as several potential mechanisms underlying fruit type specification. These findings provide the framework for understanding the evolution of different fruit types, a defining feature of angiosperms.


Assuntos
Fragaria , Rubus , Rubus/genética , Frutas/metabolismo , Transcriptoma/genética , Genômica
2.
Plant Cell Rep ; 43(3): 62, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336832

RESUMO

KEY MESSAGE: Yeast extract-induced oxidative stress in Sorbus aucuparia suspension cells leads to the biosynthesis of various hormones, which activates specific signaling pathways that augments biphenyl phytoalexin production. Pathogen incursions pose a significant threat to crop yield and can have a pronounced effect on agricultural productivity and food security. Biphenyl phytoalexins are a specialized group of secondary metabolites that are mainly biosynthesized by Pyrinae plants as a defense mechanism against various pathogens. Despite previous research demonstrating that biphenyl phytoalexin production increased dramatically in Sorbus aucuparia suspension cells (SASCs) treated with yeast extract (YE), the underlying mechanisms remain poorly understood. To address this gap, we conducted an in-depth, multi-omics analysis of transcriptome, proteome, and metabolite (including biphenyl phytoalexins and phytohormones) dynamics in SASCs exposed to YE. Our results indicated that exposure to YE-induced oxidative stress in SASCs, leading to the biosynthesis of a range of hormones, including jasmonic acid (JA), jasmonic acid isoleucine (JA-ILE), gibberellin A4 (GA4), indole-3-carboxylic acid (ICA), and indole-3-acetic acid (IAA). These hormones activated specific signaling pathways that promoted phenylpropanoid biosynthesis and augmented biphenyl phytoalexin production. Moreover, reactive oxygen species (ROS) generated during this process also acted as signaling molecules, amplifying the phenylpropanoid biosynthesis cascade through activation of the mitogen-activated protein kinase (MAPK) pathway. Key genes involved in these signaling pathways included SaBIS1, SaBIS2, SaBIS3, SaPAL, SaB4H, SaOMT, SaUGT1, SaLOX2, SaPR1, SaCHIB1, SaCHIB2 and SaCHIB3. Collectively, this study provided intensive insights into biphenyl phytoalexin accumulation in YE-treated SASCs, which would inform the development of more efficient disease-resistance strategies in economically significant cultivars.


Assuntos
Compostos de Bifenilo , Ciclopentanos , Oxilipinas , Sesquiterpenos , Sorbus , Fitoalexinas , Sorbus/genética , Sorbus/metabolismo , Multiômica , Estresse Oxidativo , Hormônios/metabolismo , Sesquiterpenos/metabolismo
3.
Biomed Chromatogr ; 38(4): e5818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38230827

RESUMO

To optimize the extraction process of crude polysaccharides from Atractylodes and elaborate the mechanism of Atractylodes polysaccharides in treating diarrhea owing to spleen deficiency, so as to lay a foundation for further development and utilization of Atractylodes lancea, we used an orthogonal test to optimize the extraction process and established a model of spleen deficiency. It was further combined with histopathology and intestinal flora to elaborate the mechanism of Atractylodes polysaccharides in the treatment of spleen-deficiency diarrhea. The optimized extraction conditions were as follows: the ratio of material to liquid was 1:25; the rotational speed was 150 rpm; the extraction temperature was 60°C; the extraction time was 2 h; and the extraction rate was about 23%. The therapeutic effect of Atractylodes polysaccharides on a spleen-deficiency diarrhea model in mice showed that the water content of stools and diarrhea grade in the treatment group were alleviated, and the levels of gastrin, motilin and d-xylose were improved. The analysis results based on gut microbiota showed that the model group had a higher diversity of gut microbiota than the normal group and treatment group, and the treatment group could correct the diversity of gut microbiota in model mice. Analysis based on the level of phylum and genus showed that the treatment group could inhibit the abundance of Helicobacter pylori genus and increase beneficial bacteria genera. The conclusion was that the optimized extraction process of Atractylodes polysaccharides was reasonable and feasible, and had a good therapeutic effect on spleen deficiency diarrhea.


Assuntos
Atractylodes , Microbioma Gastrointestinal , Camundongos , Animais , Baço , Atractylodes/química , Rizoma/química , Polissacarídeos , Diarreia/tratamento farmacológico
4.
Anal Bioanal Chem ; 415(27): 6701-6709, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37755488

RESUMO

A triangular-shaped flat plastic substrate probe was prepared for direct electrospray ionization mass spectrometry (ESI-MS) for analysis of untreated chemical and biological samples including liquids (Met-Arg-Phe-Ala peptide, reserpine, and dodecyl aldehyde), solids (biological samples, traditional Chinese medicine), and powders (roasted coffee, rhizoma coptidis, lotus plumule, and Schisandra sphenanthera). Quantitative analysis of reserpine in water yielded a detection limit of 1 ng mL-1, dynamic response range within 1-500 ng mL-1, and linearity of signal response ˃0.9925. Compared to the conventional capillary ESI, this plastic probe ESI offers lower cost of analysis (US $0.0056 per probe), higher sensitivity, lower sample consumption, longer signal duration (>6 min), better reproducibility, signal stability, and higher speed of analysis (<10 s per sample, including sample loading). Overall, the results indicate the potential of ESI-MS based on flat plastic probes as a versatile method for simple, sensitive, and stable analysis of untreated biological sample analysis.

5.
Phys Chem Chem Phys ; 25(44): 30670-30678, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37933752

RESUMO

Previous research is predominantly in consensus on the reaction mechanism between formaldehyde (HCHO) and oxygen (O2) over catalysts. However, water vapor (H2O) always remains present during the reaction, and the intrinsic role of H2O in the oxidation of HCHO still needs to be fully understood. In this study, a single-atom catalyst, Al-doped C2N substrate, Al1/C2N, can be adopted as an example to investigate the relationship and interaction among O2, H2O, and HCHO. Density functional theory (DFT) calculations and microkinetic simulations were carried out to interpret the enhancement mechanism of H2O on HCHO oxidation over Al1/C2N. The outcome demonstrates that H2O directly breaks down a surface hydroxyl group on Al1/C2N, considerably lowering the energy required to form crucial intermediates, thus promoting oxidation. Without H2O, Al1/C2N cannot effectively oxidize HCHO at ambient temperature. During oxidation, H2O takes the major catalytic responsibility, delaying the entrance of O2 into the reaction, which is not only the product but also the crucial reactant to initiate catalysis, thereby sustaining the catalytic cycle. Moreover, this study predicts the catalytic behavior at various temperatures and presents feasible recommendations for regulating the reaction rates. The oxidation mechanism of HCHO is explained at the molecular level in this study, emphasizing the intrinsic role of water on Al1/C2N, which fills in the relevant studies for HCHO oxidation on two-dimensional carbon materials.

6.
Zhongguo Zhong Yao Za Zhi ; 48(2): 374-381, 2023 Jan.
Artigo em Zh | MEDLINE | ID: mdl-36725227

RESUMO

This study aims to screen a strain from Armillaria for the cultivation of Gastrodia elata. Specifically, Armillaria strains were isolated from different producing areas of G. elata and identified. Based on the growth characteristics of the strains and the experiment on the cultivation of G. elata, an optimal A. gallica strain was screened out. The specific process is as follows. The fungus-gro-wing materials of G. elata were collected from four producing areas and the Armillaria strains were isolated(G,Y,S,H). The strains were then identified based on morphological observation and phylogeny analysis and the commonly used strains were determined. The sucrase genotypes of the strains were identified according to our previous research findings, and the growth characteristics of the strains, such as growth rate, diameter, dry weight, and polysaccharide content of the rhizomorphs, were measured. According to the biological characteristics and sucrase genotypes, two strains were selected for the cultivation of G. elata. The tuber yield and the content of gastrodin and p-hydroxybenzyl alcohol in the tuber of G. elata were measured to select the optimal strain. The results showed that the four strains were all A. gallica. The rhizomorphs of strains G and H of the same sucrase genotype had larger/higher length, growth rate, diameter, branch number, dry weight, and polysaccharide content than those of strains S and Y of the same sucrase genotype. The tuber yield and the total content of gastrodin and p-hydroxybenzyl alcohol in tuber of G. elata cultivated with strain H were 6.528 kg·m~(-2) and 0.566%, respectively, which were 4.58 and 1.30 folds those of G. elata cultivated with strain S. Strains H and S were screened out from four strains of A. gallica based on the growth characteristics and sucrase genotype. According to the tuber yield and content of total gastrodin and p-hydroxybenzyl alcohol in the tuber of G. elata, strain H was identified as the optimal one. The findings in this study are expected to lay a basis for cultivating G. elata with high yield and quality of tubers.


Assuntos
Armillaria , Gastrodia , Armillaria/genética , Polissacarídeos
7.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3149-3155, 2023 Jun.
Artigo em Zh | MEDLINE | ID: mdl-37381997

RESUMO

This study explored the preservation effect of strigolactone analogs on Gastrodia elata tubers and screened out the suitable preservation measures of G. elata to provide a safer and more effective method for its storage and preservation. Fresh G. elata tubers were treated with 7FGR24, 2,4-D isooctyl ester, and maleic hydrazide, respectively. The growth of flower buds, the activities of CAT, and MDA, and the content of gastrodin and p-hydroxybenzyl alcohol were measured to compare the effects of different compounds on the storage and preservation of G. elata. The effects of different storage temperatures on the preservation of 7FGR24 were compared and analyzed. The gibberellin signal transduction receptor gene GeGID1 was cloned, and the effect of 7FGR24 on the expression level of GeGID1 was analyzed by quantitative polymerase chain reaction(qPCR). The toxicity of the G. elata preservative 7FGR24 was analyzed by intragastric administration in mice to evaluate its safety. The results showed that compared with 2,4-D isooctyl ester and maleic hydrazide, 7FGR24 treatment had a significant inhibitory effect on the growth of G. elata flower buds, and the CAT enzyme activity of G. elata was the highest, indicating that its preservation effect was stronger. Different storage temperatures had different effects on the preservation of G. elata, and the preservation effect was the strongest at 5 ℃. The open reading frame(ORF) of GeGID1 gene was 936 bp in length, and its expression level was significantly down-regulated after 7FGR24 treatment, indicating that 7FGR24 may inhibit the growth of flower buds by inhibiting the gibberellin signal of G. elata, thereby exerting a fresh-keeping effect. Feeding preservative 7FGR24 had no significant effect on the behavior and physiology of mice, indicating that it had no obvious toxicity. This study explored the application of the strigolactone analog 7FGR24 in the storage and preservation of G. elata and preliminarily established a method for the storage and preservation of G. elata, laying a foundation for the molecular mechanism of 7FGR24 in the storage and preservation of G. elata.


Assuntos
Gastrodia , Hidrazida Maleica , Animais , Camundongos , Giberelinas , Ésteres
8.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3156-3161, 2023 Jun.
Artigo em Zh | MEDLINE | ID: mdl-37381998

RESUMO

Baby Boom(BBM) gene is a key regulatory factor in embryonic development and regeneration, cell proliferation, callus growth, and differentiation promotion. Since the genetic transformation system of Panax quinquefolius is unstable with low efficiency and long period, this study attempted to transfer BBM gene of Zea mays to P. quinquefolius callus by gene gunship to investigate its effect on the callus growth and ginsenoside content, laying a foundation for establishing efficient genetic transformation system of P. quinquefolius. Four transgenic callus of P. quinquefolius with different transformation events were obtained by screening for glufosinate ammonium resistance and molecular identification by PCR. The growth state and growth rate of wild-type and transgenic callus were compared in the same growth period. The content of ginsenoside in transgenic callus was determined by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry(UPLC-MS/MS). The results showed that transgenic callus growth rate was significantly higher than that of wild-type callus. In addition, the content of ginsenoside Rb_1, Rg_1, Ro, and Re was significantly higher than that in wild-type callus. The paper preliminarily proved the function of BBM gene in promoting growth rate and increasing ginsenoside content, which provided a scientific basis to establish a stable and efficient genetic transformation system for Panax plants in the future.


Assuntos
Ginsenosídeos , Panax , Feminino , Gravidez , Humanos , Panax/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proliferação de Células
9.
Plant Physiol ; 185(3): 1059-1075, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793929

RESUMO

Unlike ovary-derived botanical fruits, strawberry (Fragaria x ananassa) is an accessory fruit derived from the receptacle, the stem tip subtending floral organs. Although both botanical and accessory fruits initiate development in response to auxin and gibberellic acid (GA) released from seeds, the downstream auxin and GA signaling mechanisms underlying accessory fruit development are presently unknown. We characterized GA and auxin signaling mutants in wild strawberry (Fragaria vesca) during early stage fruit development. While mutations in FveRGA1 and FveARF8 both led to the development of larger fruit, only mutations in FveRGA1 caused parthenocarpic fruit formation, suggesting FveRGA1 is a key regulator of fruit set. FveRGA1 mediated fertilization-induced GA signaling during accessory fruit initiation by repressing the expression of cell division and expansion genes and showed direct protein-protein interaction with FveARF8. Further, fvearf8 mutant fruits exhibited an enhanced response to auxin or GA application, and the increased response to GA was due to increased expression of FveGID1c coding for a putative GA receptor. The work reveals a crosstalk mechanism between FveARF8 in auxin signaling and FveGID1c in GA signaling. Together, our work provides functional insights into hormone signaling in an accessory fruit, broadens our understanding of fruit initiation in different fruit types, and lays the groundwork for future improvement of strawberry fruit productivity and quality.


Assuntos
Fragaria/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
10.
Environ Sci Technol ; 56(19): 13996-14007, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36083161

RESUMO

In this study, a wet scrubber coupled with a persulfate-based advanced oxidation process [carbocatalysts/peroxymonosulfate (PMS)] was demonstrated to efficiently remove gaseous volatile organic compounds (VOCs). The removal efficiency of a representative VOC, styrene, was stable at above 98%, and an average mineralization rate was achieved at 76% during 2 h. The removal efficiency of the carbocatalysts/PMS wet scrubber for styrene was much higher than that of pure water, carbocatalysts/water, or PMS/water systems. Quenching experiments, electron spin resonance spectroscopy, in-situ Raman spectroscopy and density functional theory (DFT) calculations indicated that singlet oxygen (1O2) and oxidative complexes are the main reactive oxygen species and that both contributed to styrene removal. In particular, carbonyl groups (C═O) in the carbocatalyst were found to be the active sites for activating PMS during styrene oxidation. The role of 1O2 was discovered to be benzene ring breaking and a possible non-radical oxidation pathway of styrene was proposed based on time-of-flight mass spectroscopy which was further verified by DFT calculations. In particular, the electron transfer process of multi world carbon nanotubes-PMS* in styrene oxidation was further studied in-depth by experiments and DFT calculations. The unstable vinyl on styrene was simultaneously degraded by the oxidative complexes and 1O2 into benzene, and finally oxidized by 1O2 into H2O and CO2. This study provides an effective method for VOC removal and clearly illustrates the complete degradation mechanism of styrene in a nonradical PMS-based process by a wet scrubber.


Assuntos
Nanotubos de Carbono , Compostos Orgânicos Voláteis , Benzeno , Dióxido de Carbono , Gases , Peróxidos/química , Espécies Reativas de Oxigênio , Oxigênio Singlete , Estirenos , Água
11.
J Nat Prod ; 85(8): 2006-2017, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35976233

RESUMO

Bladder cancer, specifically, muscle-invasive bladder cancer (MIBC), is among the most common malignant tumors. Patients with MIBC who cannot tolerate standard drugs require novel treatments. Targeting apoptosis may help treat cancer, which may be achieved with the use of some natural products. Nodosin, found in Isodon serra (Maxim.) Kudo (known as Xihuangcao), may inhibit bladder cancer cells. Transcriptomics and proteomics dual-omic analyses revealed the network pharmacological mechanism: (1) blocking the S phase by up-regulating RPA2, CLSPN, MDC1, PDCD2L, and E2F6 gene expressions, suppressing cancer cell proliferation; (2) inducing apoptosis and autophagy and restraining ferroptosis by up-regulating HMOX1, G0S2, SQSTM1, FTL, SLC7A11, and AIFM2 gene expressions; (3) preventing cancer cell migration by down-regulating NEXN, LIMA1, CFL2, PALLD, and ITGA3 gene expressions. In vivo, nodosin inhibited bladder cancer cell growth in a model of xenograft tumor in nude mice. This study is the first to report basic research findings on the network pharmacological mechanism of cytotoxicity of bladder cancer cells by nodosin, providing novel evidence for the application of nodosin in the field of oncology; however, other mechanisms may be involved in the effects of nodosin for further research. These findings provide a foundation for the development of novel MIBC drugs.


Assuntos
Produtos Biológicos , Neoplasias da Bexiga Urinária , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/uso terapêutico , Animais , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/farmacologia , Proteínas do Citoesqueleto/uso terapêutico , Diterpenos , Humanos , Camundongos , Camundongos Nus , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/farmacologia , Proteínas dos Microfilamentos/uso terapêutico , Músculos/metabolismo , Músculos/patologia , Farmacologia em Rede , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
12.
Nano Lett ; 21(8): 3680-3689, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33596656

RESUMO

Efficient endosomal escape is the most essential but challenging issue for siRNA drug development. Herein, a series of quaternary ammonium-based amphiphilic triblock polymers harnessing an elaborately tailored pH-sensitive hydrophobic core were synthesized and screened. Upon incubating in an endosomal pH environment (pH 6.5-6.8), mPEG45-P(DPA50-co-DMAEMA56)-PT53 (PDDT, the optimized polymer) nanomicelles (PDDT-Ms) and PDDT-Ms/siRNA polyplexes rapidly disassembled, leading to promoted cytosolic release of internalized siRNA and enhanced silencing activity evident from comprehensive analysis of the colocalization and gene silencing using a lysosomotropic agent (chloroquine) and an endosomal trafficking inhibitor (bafilomycin A1). In addition, PDDT-Ms/siPLK1 dramatically repressed tumor growth in both HepG2-xenograft and highly malignant patient-derived xenograft models. PDDT-Ms-armed siPD-L1 efficiently blocked the interaction of PD-L1 and PD-1 and restored immunological surveillance in CT-26-xenograft murine model. PDDT-Ms/siRNA exhibited ideal safety profiles in these assays. This study provides guidelines for rational design and optimization of block polymers for efficient endosomal escape of internalized siRNA and cancer therapy.


Assuntos
Endossomos , Polímeros , Animais , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , RNA Interferente Pequeno/genética
13.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3838-3845, 2021 Aug.
Artigo em Zh | MEDLINE | ID: mdl-34472257

RESUMO

The longevity mechanism of ginseng(Panax ginseng) is related to its strong meristematic ability. In this paper, this study used bioinformatic methods to identify the members of the ginseng TCP gene family in the whole genome and analyzed their sequence characteristics. Then, quantitative real-time fluorescent PCR was performed to analyze the TCP genes containing elements rela-ted to meristem expression in the taproots, fibrous roots, stems, and leaves. According to the data, this study further explored the expression specificity of TCP genes in ginseng tissues, which facilitated the dissection of the longevity mechanism of ginseng. The ginseng TCP members were identified and analyzed using PlantTFDB, ExPASy, MEME, PLANTCARE, TBtools, MEGA and DNAMAN. The results demonstrated that there were 60 TCP gene family members in ginseng, and they could be divided into two classes: Class Ⅰ and Class Ⅱ, in which the Class Ⅱ possessed two subclasses: CYC-TCP and CIN-TCP. The deduced TCP proteins in ginseng had the length of 128-793 aa, the isoelectric point of 4.49-9.84 and the relative molecular mass of 14.2-89.3 kDa. They all contained the basic helix-loop-helix(bHLH) domain. There are a variety of stress response-related cis-acting elements in the promoter regions of ginseng TCP genes, and PgTCP20-PgTCP24 contained the elements associated with meristematic expression. The transcription levels of PgTCP20-PgTCP24 were high in fibrous roots and leaves, but low in stems, indicating the tissue-specific expression of ginseng TCP genes. The Class Ⅰ TCP members which contained PgTCP20-PgTCP23, may be important regulators for the growth and development of ginseng roots.


Assuntos
Panax , Fatores de Transcrição , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Família Multigênica , Panax/genética , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4111-4116, 2021 Aug.
Artigo em Zh | MEDLINE | ID: mdl-34467721

RESUMO

Sanguinarine is the main active component of the Papaver plants, and protopine-6-hydroxylase(P6 H), involved in the sanguinarine biosynthetic pathway, can oxidize protopine to 6-hydroxyprotopine. The investigation on the diversity of P6 H genes in the medicinal Papaver plants contributes to the acquirement of P6 H with high activity to increase the biosynthesis of sanguinarine. Five P6 H genes in P. somniferum, P. orientale, and P. rhoeas were discovered based on the re-sequencing data of the Papaver species, followed by bioinformatics analysis. With the elongation factor 1α(EF-1α), which exhibits stable expression in the root and stem, as the internal reference gene, the transcription levels of P6H genes in roots and stems of the Papaver plants were detected by real-time fluorescent quantitative PCR. As indicated by the re-sequencing results, there were two genotypes of P6H in P. somniferum and P. orientale, respectively, and only one in P. rhoeas. The bioinformatics analysis showed that the P6 H proteins of the three Papaver plants contained the conserved domain cl12078, which is the characteristic of p450 supergene family, and transmembrane regions. The existence of signal peptide remained verification. Real-time fluorescent quantitative PCR results revealed that the transcription level of P6 H in roots of P. somniferum was about 1.44 times of that in stems(α=0.05). The present study confirmed genetic diversity of P6 H in the three medicinal Papaver plants, which lays a basis for the research on the biosynthesis pathway and mechanism of sanguinarine in Papaver species.


Assuntos
Alcaloides de Berberina , Papaver , Benzofenantridinas , Sistema Enzimático do Citocromo P-450/genética , Variação Genética , Papaver/genética
15.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5797-5803, 2021 Nov.
Artigo em Zh | MEDLINE | ID: mdl-34951167

RESUMO

Schisandra sphenanthera is dioecious and only the fruits of female plants can be used as medicine and food. It is of great significance for the cultivation and production of S. sphenanthera to explore the differences between male and female plants at the non-flowering stage and develop the identification markers at non-flowering or seedling stage. In this study, the transcriptome of male and female leaves of S. sphenanthera at the non-flowering stage was sequenced by Illumina high-throughput sequencing technology and analyzed based on bioinformatics. A total of 236 682 transcripts were assembled by Trinity software and 171 588 were chosen as unigenes. Finally, 1 525 differentially expressed genes(DEGs) were identified, with 458 up-regulated and 1 067 down-regulated in female lea-ves. The down-regulated genes mainly involve photosynthesis, photosynthesis-antenna protein, carbon fixation in photosynthetic or-ganisms, and other pathways. Real-time quantitative PCR(qPCR) identified two genes between male and female leaves and one of them was a HVA22-like gene related to floral organ development and abscisic acid(ABA). Enzyme linked immunosorbent assay(ELISA) was applied to determine the content of ABA, auxin, gibberellin, and zeatin riboside(ZR) in leaves of S. sphenanthera. The results showed that the content of ABA and ZR in male leaves was significantly higher than that in female leaves. The involvement of down-regulated genes in female leaves in the photosynthesis pathway and the significant differences in the content of endogenous hormones between male and female leaves lay a scientific basis for analyzing the factors affecting sex differentiation of S. sphenanthera.


Assuntos
Schisandra , Ácido Abscísico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , RNA-Seq , Transcriptoma
16.
J Exp Bot ; 71(20): 6396-6407, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32794554

RESUMO

Adventitious root branching is vital to plant growth and regeneration, but the regulation of this process remains unclear. We therefore investigated how ginsenosides regulate adventitious root branching in Panax ginseng. Cell proliferation and adventitious root branching were decreased in the presence of ginsenoside Rb1 and a high concentration of ginsenoside Re, but increased when treating with a low concentration of Re. Moreover, the exogenous application of a synthetic dodeca-amino acid peptide that has a CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) motif corresponding to PgCLE45 retarded root growth in both ginseng and Arabidopsis. The root Re levels and the expression of the DDS, CYP716A47, and CYP716A53 genes that encode enzymes involved in ginsenoside synthesis were decreased in the presence of PgCLE45. The expression profiles of PgWOX and PgCLE genes were determined to further investigate the CLE-WOX signaling pathway. The levels of PgWOX11 transcripts showed an inverse pattern to PgCLE45 transcripts. Using yeast one-hybrid assay, EMSA, and ChIP assay, we showed that PgWOX11 bound to the PgCLE45 promoter, which contained the HD motif. Transient expression assay showed that PgWOX11 induced the expression of PgCLE45 in adventitious roots, while PgCLE45 suppressed the expression of PgWOX11. These results suggest that there is a negative feedback regulation between PgCLE45 and PgWOX11. Taken together, these data show that ginsenosides regulate adventitious root branching via a novel PgCLE45-PgWOX11 regulatory loop, providing a potential mechanism for the regulation of adventitious root branching.


Assuntos
Ginsenosídeos , Panax , Raízes de Plantas
17.
Mol Biol Rep ; 47(12): 9301-9311, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33190199

RESUMO

Lonicera japonica is used in Chinese herbal medicines with a wide spectrum of pharmacological properties associated with chlorogenic acid, flavonoid and iridoid. The biosynthesis of these compounds could be affected by genetic inheritance and epigenetic modification. However, the mechanisms that regulate the expression of genes involved in the biosynthesis of these compounds are rarely known. The results of qRT-PCR showed that the biosynthesis gene expression of these compounds was related to histone H3K4 and H3K9 methylation levels. These active compounds content of L. japonica were measured by UPLC-MS/MS. H3K4me3 showed a positive correlation with chlorogenic acid and loganic acid content, and H3K9me positively correlated with luteolin content. The correlation between histone methylation levels and the levels of luteolin and loganic acid in L. japonica from different producing areas validate the regulatory role of histone methylation in biosynthesis of bioactive compounds. Our study demonstrated a potential regulatory network of H3K9/H3K4 methylation to gene expression and content of secondary metabolites, and provided a basis for understanding the mechanism underlying the variation of major bioactive compounds in L. japonica.


Assuntos
Ácido Clorogênico/metabolismo , Flavonoides/biossíntese , Histonas/metabolismo , Iridoides/metabolismo , Lonicera/genética , Lonicera/metabolismo , Proteínas de Plantas/metabolismo , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Metilação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Espectrometria de Massas em Tandem
18.
Molecules ; 25(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927655

RESUMO

The aim of this study was to overcome drawbacks of the inhomogeneous dispersion and facile agglomeration of nano-ZnO/poly(N-isopropylacrylamide) composite hydrogels (nano-ZnO/PNIPAm composite hydrogels) during synthesis and improve the anti-mold property of the nano-ZnO/PNIPAm composite hydrogels. Here, nano-ZnO/PNIPAm composite hydrogels were prepared by the radical polymerization method. Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), differential scanning calorimeter (DSC), and dynamic light scattering (DLS) were used to characterize the effects of different dispersants on the particle sizes, dispersions, and phase transition characteristics of the nano-ZnO/PNIPAm composite hydrogels. The anti-mold properties of nano-ZnO/PNIPAm composite hydrogels were studied. Results revealed that the nano-ZnO/PNIPAm composite hydrogel prepared by the addition of nano-ZnO dispersion liquid exhibited the smallest particle size, the most homogeneous dispersion, and the highest stability. The addition of the dispersant did not change the phase transition characteristics of nano-ZnO/PNIPAm, and the nano-ZnO/PNIPAm composite hydrogels (Pf) exhibited good anti-mold properties to the bamboo mold.


Assuntos
Resinas Acrílicas/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Fungos/efeitos dos fármacos , Hidrogéis/química , Nanopartículas Metálicas/química , Óxido de Zinco/química , Varredura Diferencial de Calorimetria , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
19.
J Integr Plant Biol ; 62(3): 269-286, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30791200

RESUMO

Fruit crops, including apple, orange, grape, banana, strawberry, watermelon, kiwifruit and tomato, not only provide essential nutrients for human life but also contribute to the major agricultural output and economic growth of many countries and regions in the world. Recent advancements in genome editing provides an unprecedented opportunity for the genetic improvement of these agronomically important fruit crops. Here, we summarize recent reports of applying CRISPR/Cas9 to fruit crops, including efforts to reduce disease susceptibility, change plant architecture or flower morphology, improve fruit quality traits, and increase fruit yield. We discuss challenges facing fruit crops as well as new improvements and platforms that could be used to facilitate genome editing in fruit crops, including dCas9-base-editing to introduce desirable alleles and heat treatment to increase editing efficiency. In addition, we highlight what we see as potentially revolutionary development ranging from transgene-free genome editing to de novo domestication of wild relatives. Without doubt, we now see only the beginning of what will eventually be possible with the use of the CRISPR/Cas9 toolkit. Efforts to communicate with the public and an emphasis on the manipulation of consumer-friendly traits will be critical to facilitate public acceptance of genetically engineered fruits with this new technology.


Assuntos
Produtos Agrícolas/metabolismo , Frutas/metabolismo , Edição de Genes/métodos , Plantas Geneticamente Modificadas/metabolismo , Alelos , Sistemas CRISPR-Cas/genética , Produtos Agrícolas/genética , Frutas/genética , Plantas Geneticamente Modificadas/genética
20.
Zhongguo Zhong Yao Za Zhi ; 45(5): 1070-1075, 2020 Mar.
Artigo em Zh | MEDLINE | ID: mdl-32237448

RESUMO

The application of traditional Chinese medicine(TCM) formula granules in clinical practice is gradually extensive. However, TCM formula granules is still lacking rapid and simple quality control standards. In this study, allele-specific PCR and enzyme-linked immunoassay(ELISA) was used for rapid detection of the quality of Lonicerae Japonicae Flos formula granules. The authenticity of Lonicerae Japonicae Flos formula granules was identified by allele-specific PCR and index component was detected by ELISA. Thus, it lays a foundation for the establishment of rapid quality detection standard for Lonicerae Japonicae Flos formula granules, and also provides reference for other studies on the quality standard of traditional Chinese medicine formula granules.


Assuntos
Medicamentos de Ervas Chinesas/análise , Lonicera/química , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Medicina Tradicional Chinesa , Reação em Cadeia da Polimerase , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA