Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 30(15): 127285, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32527458

RESUMO

It is known that 7-epitaxol has much stronger cytotoxicity than taxol does. However, the content of 7-epitaxol in yew is much less than taxol, which makes it more costly to obtain. We describe here a method to effectively convert taxol to 7-epitaxol. The key condition for reaction needs NaHCO3 in solvent acetonitrile (ACN). The conversion rate can be over 82%.


Assuntos
Antifúngicos/síntese química , Paclitaxel/síntese química , Bicarbonato de Sódio/química , Acetonitrilas/química , Antifúngicos/química , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Conformação Molecular , Paclitaxel/análogos & derivados , Paclitaxel/química , Paclitaxel/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos
2.
Appl Microbiol Biotechnol ; 102(5): 2441-2454, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29387953

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo), which is mediated by "Candidatus Methylomirabilis oxyfera-like" bacteria, is unique in linking the carbon and nitrogen cycles. However, the niche and activity of n-damo bacteria in the mangrove ecosystem have not been confirmed. Here, we report the occurrence of the n-damo process in the mangrove wetland of the Zhangjiang Estuary, China. The widespread occurrence of n-damo bacteria in mangrove wetland was confirmed using real-time quantitative polymerase chain reaction (qPCR) assay, which showed that the abundance of Methylomirabilis oxyfera-like bacterial 16S rRNA and pmoA genes ranged from 2.43 × 106 to 2.09 × 107 and 2.07 × 106 to 3.38 × 107copies per gram of dry soil in the examined sediment cores. The highest amount of targeting genes was all detected in the upper layer (0-20 cm). Phylogenetic analyses of n-damo bacterial 16S rRNA and pmoA genes illustrated the depth-specific distribution and high diversity of n-damo bacteria in the mangrove wetland. Stable isotope experiments further confirmed the occurrence of n-damo in the examined mangrove sediments, and the potential n-damo rates ranged from 25.93 to 704.08 nmol CO2 per gram of dry soil per day at different depths of the sediment cores, with the n-damo being more active in the upper layer of the mangrove sediments. These results illustrate the existence of active M. oxyfera-like bacteria and indicate that the n-damo process is a previously overlooked microbial methane sink in the mangrove wetlands.


Assuntos
Sedimentos Geológicos/microbiologia , Methylococcaceae/isolamento & purificação , Methylococcaceae/metabolismo , Nitritos/metabolismo , Anaerobiose , China , DNA Bacteriano/genética , Estuários , Metano/metabolismo , Methylococcaceae/classificação , Methylococcaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Áreas Alagadas
3.
Wei Sheng Wu Xue Bao ; 57(3): 399-410, 2017 Mar 04.
Artigo em Zh | MEDLINE | ID: mdl-29756438

RESUMO

Objective: The present study aims to analyze the chemotaxis genes and proteins of several PAH-degrading Novosphingobium strains, and the chemotaxis of these strains toward aromatic compounds and intermediates. Methods: Based on genome comparative analysis, we identified the chemotaxis genes organization and proteins distribution. We used drop and swarm plate assays to detect the chemotaxis of these strains toward aromatic compounds and intermediates of TCA cycle. Results: We found that all these Novosphingobium strains showed chemotaxis, but the chemotatic ability varied. The completed genome sequenced strains N. pentaromativorans F2, N. pentaromativorans US6-1, N. pentaromativorans PP1Y, Novosphingobium sp. AP12, Novosphingobium sp. Rr 2-17, and Novosphingobium nitrogenifigens DSM 19370 contained MCP, CheW, CheA, CheB, CheR and CheY. Strain F2, US6-1 and PP1Y, shared a consistent order of chemotaxis genes in "che" cluster. The chemotatic system of these Novosphingobium strains belonged to the Fla chemotactic system. Conclusion: These strains all contained a complete chmotaxis pathway. Their chemotactic ability toward aromatic compounds and intermediates varied, and the chemotaxis of US6-1 was obvious.


Assuntos
Quimiotaxia , Sphingomonadaceae/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia/efeitos dos fármacos , Hidrocarbonetos Aromáticos/farmacologia , Sphingomonadaceae/efeitos dos fármacos , Sphingomonadaceae/genética , Ácido Tricloroacético/farmacologia
4.
Microbiol Res ; 257: 126977, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35114496

RESUMO

The endophytic fungus Pestalotiopsis microspora has drawn attention due to its production of dibenzodioxocinones which are a new class of inhibitors of cholesterol ester transfer protein (CETP). Previous studies showed that the pks8 gene cluster is responsible for the biosynthesis of dibenzodioxocinones in P. microspora. Disrupting the gene encoding a transcription factor DibT, which contains a zinc-finger functional domain, led to a significant decrease in the production of dibenzodioxocinones. To further investigate the function of DibT in the expression of pks8 cluster, we constructed dibT-overexpressing strains and found that all genes in the pks8 cluster were upregulated and the yields of dibenzodioxocinones were significantly increased. Moreover, function of DibT was required for the expression of most PKS genes outside of pks8 clusters, i.e., 43 out of 48 defined PKS genes, and boosted pigmentation of the mycelium and conidia. Still, we identified a new dibenzodioxocinone, 1',2'-dimethyl-3'-formyl- 1',2'-dehydropenicillide (6) and a previously known, but conditionally synthesized dibenzodioxocinone, 3'-methoxy-1',2'-dehydropenicillide (4) from the overexpression strains. Our results show that DibT was the key transcription factor in the expression of pks8 cluster and still has a wide effect on the expression of PKS genes in the genome. This work provides information for the regulation of dibenzodioxocinone biosynthesis and may be helpful for the development of new CETP inhibitors.


Assuntos
Proteínas Fúngicas , Fatores de Transcrição , Proteínas Fúngicas/genética , Família Multigênica , Pestalotiopsis , Esporos Fúngicos , Fatores de Transcrição/genética
5.
J Fungi (Basel) ; 8(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35049978

RESUMO

Melanins are the common fungal pigment, which contribute to stress resistance and pathogenesis. However, few studies have explored the regulation mechanism of its synthesis in filamentous fungi. In this study, we identified two transcription factors, Pmr1 and Pmr2, in the filamentous fungus Pestalotiopsis microspora. Computational and phylogenetic analyses revealed that Pmr1 and Pmr2 were located in the gene cluster for melanin biosynthesis. The targeted deletion mutant strain Δpmr1 displayed defects in biosynthesis of conidia pigment and morphological integrity. The deletion of pmr2 resulted in reduced conidia pigment, but the mycelial morphology had little change. Moreover, Δpmr2 produced decreased conidia. RT-qPCR data revealed that expression levels of genes in the melanin biosynthesis gene cluster were downregulated from the loss of Pmr1 and Pmr2. Interestingly, the yield of secondary metabolites in the mutant strains Δpmr1 and Δpmr2 increased, comparing with the wild type, and additionally, Pmr1 played a larger regulatory role in secondary metabolism. Taken together, our results revealed the crucial roles of the transcription factors Pmr1 and Pmr2 in melanin synthesis, asexual development and secondary metabolism in the filamentous fungus P. microspora.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA