RESUMO
OBJECTIVE: To build and merge a diagnostic model called multi-input DenseNet fused with clinical features (MI-DenseCFNet) for discriminating between Staphylococcus aureus pneumonia (SAP) and Aspergillus pneumonia (ASP) and to evaluate the significant correlation of each clinical feature in determining these two types of pneumonia using a random forest dichotomous diagnosis model. This will enhance diagnostic accuracy and efficiency in distinguishing between SAP and ASP. METHODS: In this study, 60 patients with clinically confirmed SAP and ASP, who were admitted to four large tertiary hospitals in Kunming, China, were included. Thoracic high-resolution CT lung windows of all patients were extracted from the picture archiving and communication system, and the corresponding clinical data of each patient were collected. RESULTS: The MI-DenseCFNet diagnosis model demonstrates an internal validation set with an area under the curve (AUC) of 0.92. Its external validation set demonstrates an AUC of 0.83. The model requires only 10.24s to generate a categorical diagnosis and produce results from 20 cases of data. Compared with high-, mid-, and low-ranking radiologists, the model achieves accuracies of 78% vs. 75% vs. 60% vs. 40%. Eleven significant clinical features were screened by the random forest dichotomous diagnosis model. CONCLUSION: The MI-DenseCFNet multimodal diagnosis model can effectively diagnose SAP and ASP, and its diagnostic performance significantly exceeds that of junior radiologists. The 11 important clinical features were screened in the constructed random forest dichotomous diagnostic model, providing a reference for clinicians. CLINICAL RELEVANCE STATEMENT: MI-DenseCFNet could provide diagnostic assistance for primary hospitals that do not have advanced radiologists, enabling patients with suspected infections like Staphylococcus aureus pneumonia or Aspergillus pneumonia to receive a quicker diagnosis and cut down on the abuse of antibiotics. KEY POINTS: ⢠MI-DenseCFNet combines deep learning neural networks with crucial clinical features to discern between Staphylococcus aureus pneumonia and Aspergillus pneumonia. ⢠The comprehensive group had an area under the curve of 0.92, surpassing the proficiency of junior radiologists. ⢠This model can enhance a primary radiologist's diagnostic capacity.
Assuntos
Aprendizado Profundo , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Diagnóstico Diferencial , Tomografia Computadorizada por Raios X/métodos , Pneumonia Estafilocócica/diagnóstico por imagem , Pneumonia Estafilocócica/microbiologia , Idoso , Aspergilose Pulmonar/diagnóstico por imagem , Staphylococcus aureus/isolamento & purificação , Adulto , Interpretação de Imagem Radiográfica Assistida por Computador/métodosRESUMO
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a notoriously agricultural pest that causes serious economic losses to fruits and vegetables. Widespread insecticide resistance in B. dorsalis is a major obstacle in successful control. Therefore, new pest control strategies, such as those targeting specific genes that can block pest development, are urgently needed. In the current study, the function of JHAMT in B. dorsalis was systematically investigated. A methyltransferase gene in B. dorsalis (BdJHAMT) that is homologous to JHAMT of Drosophila melanogaster was cloned firstly. The subsequently spatiotemporal expression analysis indicated that BdJHAMT mRNA was continuously present in the larval stage, declined sharply immediately before pupation, and then increased in the adult. Subcellular localization showed that BdJHAMT was localized in the adult corpora allata and larval intestinal wall cells. The JH III titer in B. dorsalis was closely related to the transcription level of BdJHAMT in different developmental stages. The dsBdJHAMT feeding-based RNAi resulted in a greatly decreased JH III titer that disrupted fly development. The slow growth caused by BdJHAMT silencing was partially rescued by application of the JH mimic, methoprene. These results demonstrated that BdJHAMT was crucial for JH biosynthesis and thus regulated larval development in B. dorsalis, indicating it may serve as a prospective target for the development of novel control strategies against this pest.
Assuntos
Hormônios Juvenis , Tephritidae , Animais , Hormônios Juvenis/farmacologia , Interferência de RNA , Metiltransferases/genética , Drosophila melanogaster , Tephritidae/genética , Drosophila , Larva/genéticaRESUMO
OBJECTIVE: To observe the expression of phospholipid scramblase 1 (PLSCR1) in matrine (MAT) induced differentiation of all-trans retinoic acid (ATRA) resistant acute promyelocytic leukemia (APL) cells, and to explore its correlation to cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signal pathway. METHODS: NB4 (an APL cell line sensitive to ATRA) and NB4-R1 (a resistant strain of ATRA) were observed as subjects in this study. Effects of combined treatment of 0.1 mmol/L MAT and 1 [mol/L ATRA on the differentiation of two cell lines were detected using nitroblue tetrazolium (NBT) reduction test and flow cytometry (CD11b). Expressions of PML/RARot and PLSCR1 protein/gene were detected using Western blot and Real-time fluorescence quantitative PCR assay. Meanwhile, H89, PKA antagonist, was used to observe cell differentiation antigen and changes of aforesaid proteins and genes. RESULTS: MAT combined ATRA could significantly elevate positive rates of NBT and CD11 b in NB4-R1 cells, and significantly down-regulate the expression of PML/RARapha-fusion protein/gene (P < 0.05, P < 0.01). ATRA used alone could obviously enhance the expression of PLSCRI in NB4 cells at protein and mRNA levels (P < 0.01). But the expression of PLSCR1 was up-regulated in NB4-R1 cells, but with statistical.difference only at the protein level (P <0. 01). In combination of MAT, PLSCR1 protein expression was further elevated in the two cell lines (P < 0.01). Besides, there was statistical difference in mRNA expressions in NB4-R1 cells (P < 0.05). All these actions could be reversed by treatment of 10 micromol/L H89 (P < 0.05, P < 0.01). CONCLUSION: MAT combined ATRA could significantly induce the differentiation of NB4-R1 cells, and inhibit the expression of PML/RARalpha fusion gene/protein, which might be associated with up-regulating PLSCR1 expression.
Assuntos
Diferenciação Celular , Leucemia Promielocítica Aguda/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Alcaloides , Antineoplásicos , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Quinolizinas , RNA Mensageiro , Transdução de Sinais , Tretinoína , Células Tumorais Cultivadas , Regulação para Cima , MatrinasRESUMO
The citrus red mite, Panonychus citri (McGregor), is an important spider mite pest in citrus producing areas. Owing to long-term acaricide exposure, resistance has evolved rapidly in recent years. To evaluate the extent of resistance, seven field mite populations sampled from various geographical locations in China during 2015-2018 were tested using the leaf-dip bioassay method to determine their susceptibilities to four acaricides. In comparison with the susceptible strain maintained in the laboratory, low or moderate levels of fenpropathrin resistance, while no resistance to abamectin or cyflumetofen, were found among populations sampled from Liangping, Wanzhou, Daying, and Anyue in Southwestern China during the test period. High levels (>1,000-fold, with LC50 values that were greater than the recommended concentration) of resistance to fenpropathrin had evolved in field populations from Southern China, including Guilin, Nanning, and Yuxi, when compared with that of the susceptible strain. Populations from Guilin and Nanning also evolved high resistance levels to abamectin (1,088-fold and 1,401-fold) and cyflumetofen (2,112-fold and 9,093-fold). All the populations sampled in 2018 showed a moderate or high resistance to bifenazate. Generally, field populations of citrus red mites from Southwestern China were more sensitive to the tested acaricides than those of Southern China. The data provide a foundation for developing acaricide resistance management strategies in these regions.
Assuntos
Acaricidas , Citrus , Ácaros , Tetranychidae , Animais , ChinaRESUMO
Juvenile hormone (JH) prevents metamorphosis during insect larval stages and promotes adult reproductive processes. Krüppel-homolog 1 (Kr-h1), a zinc finger transcription factor assumed to be induced by JH via the JH receptor methoprene-tolerant (Met), mediates the antimetamorphic effect of JH in insects, but its function in JH-mediated reproductive processes has not been fully explored. In this study, Met and Kr-h1 involved in the JH signaling pathway were first cloned and identified from the oriental fruit fly, Bactrocera dorsalis, an important pest infesting fruit and vegetables worldwide. Subsequent spatiotemporal expression analysis revealed that Met and Kr-h1 were both highly expressed in 7-day-old adults and fat body of female adults, respectively. Treatment with a JH analog (methoprene) significantly induced the expression of JH signaling and vitellogenin (Vg) genes and accelerated ovary development. RNA interference (RNAi) further revealed that either Met or Kr-h1 depletion at the adult stage of B. dorsalis impeded ovary development, with significantly lower egg production noted as well. In addition, rescue through methoprene application after RNAi stimulated the expression of JH signaling and Vg genes. Although there were still differences in ovary phenotype between rescued insects and the pre-RNAi control, ovary redevelopment with a larger surface area was observed, consistent with the spatiotemporal expression and phenotypes recorded in the original methoprene experiment. Our data reveal the involvement of Met and Kr-h1 in insect vitellogenesis and egg production, thus indicating the crucial role of the JH signaling pathway in insect reproduction.