Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 398(2): 242-54, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25527076

RESUMO

Osteoblast induction and differentiation in developing long bones is dynamically controlled by the opposing action of transcriptional activators and repressors. In contrast to the long list of activators that have been discovered over past decades, the network of repressors is not well-defined. Here we identify the expression of Foxp1/2/4 proteins, comprised of Forkhead-box (Fox) transcription factors of the Foxp subfamily, in both perichondrial skeletal progenitors and proliferating chondrocytes during endochondral ossification. Mice carrying loss-of-function and gain-of-function Foxp mutations had gross defects in appendicular skeleton formation. At the cellular level, over-expression of Foxp1/2/4 in chondroctyes abrogated osteoblast formation and chondrocyte hypertrophy. Conversely, single or compound deficiency of Foxp1/2/4 in skeletal progenitors or chondrocytes resulted in premature osteoblast differentiation in the perichondrium, coupled with impaired proliferation, survival, and hypertrophy of chondrocytes in the growth plate. Foxp1/2/4 and Runx2 proteins interacted in vitro and in vivo, and Foxp1/2/4 repressed Runx2 transactivation function in heterologous cells. This study establishes Foxp1/2/4 proteins as coordinators of osteogenesis and chondrocyte hypertrophy in developing long bones and suggests that a novel transcriptional repressor network involving Foxp1/2/4 may regulate Runx2 during endochondral ossification.


Assuntos
Condrócitos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Osteogênese , Proteínas Repressoras/metabolismo , Animais , Osso e Ossos/metabolismo , Células COS , Calcificação Fisiológica , Chlorocebus aethiops , Condrócitos/patologia , Condrogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Extremidades/embriologia , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Hipertrofia , Integrases/metabolismo , Camundongos Transgênicos , Ligação Proteica , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética
2.
Dev Biol ; 369(2): 308-18, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22819676

RESUMO

It is generally thought that vertebral patterning and identity are globally determined prior to somite formation. Relatively little is known about the regulators of vertebral specification after somite segmentation. Here, we demonstrated that Ndrg2, a tumor suppressor gene, was dynamically expressed in the presomitic mesoderm (PSM) and at early stage of differentiating somites. Loss of Ndrg2 in mice resulted in vertebral homeotic transformations in thoracic/lumbar and lumbar/sacral transitional regions in a dose-dependent manner. Interestingly, the inactivation of Ndrg2 in osteoblasts or chondrocytes caused defects resembling those observed in Ndrg2(-/-) mice, with a lower penetrance. In addition, forced overexpression of Ndrg2 in osteoblasts or chondrocytes also conferred vertebral defects, which were distinct from those in Ndrg2(-/-) mice. These genetic analyses revealed that Ndrg2 modulates vertebral identity in segmented somites rather than in the PSM. At the molecular level, combinatory alterations of the amount of Hoxc8-11 gene transcripts were detected in the differentiating somites of Ndrg2(-/-) embryos, which may partially account for the vertebral defects in Ndrg2 mutants. Nevertheless, Bmp/Smad signaling activity was elevated in the differentiating somites of Ndrg2(-/-) embryos. Collectively, our findings unveiled Ndrg2 as a novel regulator of vertebral specification in differentiating somites.


Assuntos
Proteínas/metabolismo , Somitos/embriologia , Somitos/metabolismo , Coluna Vertebral/embriologia , Coluna Vertebral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sequência de Bases , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Primers do DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Genes Homeobox , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Gravidez , Proteínas/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
3.
Sci Adv ; 7(23)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34088671

RESUMO

Immunomodulatory drugs (IMiDs) have markedly improved patient outcome in multiple myeloma (MM); however, resistance to IMiDs commonly underlies relapse of disease. Here, we identify that tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) knockdown (KD)/knockout (KO) in MM cells mediates IMiD resistance via activation of noncanonical nuclear factor κB (NF-κB) and extracellular signal-regulated kinase (ERK) signaling. Within MM bone marrow (BM) stromal cell supernatants, TNF-α induces proteasomal degradation of TRAF2, noncanonical NF-κB, and downstream ERK signaling in MM cells, whereas interleukin-6 directly triggers ERK activation. RNA sequencing of MM patient samples shows nearly universal ERK pathway activation at relapse on lenalidomide maintenance therapy, confirming its clinical relevance. Combination MEK inhibitor treatment restores IMiD sensitivity of TRAF2 KO cells both in vitro and in vivo. Our studies provide the framework for clinical trials of MEK inhibitors to overcome IMiD resistance in the BM microenvironment and improve patient outcome in MM.


Assuntos
Agentes de Imunomodulação , Mieloma Múltiplo , Medula Óssea/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , NF-kappa B/metabolismo , Recidiva Local de Neoplasia , Fator 2 Associado a Receptor de TNF/metabolismo , Microambiente Tumoral
4.
Nat Commun ; 12(1): 7003, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853298

RESUMO

Cancer cells acquire genetic heterogeneity to escape from immune surveillance during tumor evolution, but a systematic approach to distinguish driver from passenger mutations is lacking. Here we investigate the impact of different immune pressure on tumor clonal dynamics and immune evasion mechanism, by combining massive parallel sequencing of immune edited tumors and CRISPR library screens in syngeneic mouse tumor model and co-culture system. We find that the core microRNA (miRNA) biogenesis and targeting machinery maintains the sensitivity of cancer cells to PD-1-independent T cell-mediated cytotoxicity. Genetic inactivation of the machinery or re-introduction of ANKRD52 frequent patient mutations dampens the JAK-STAT-interferon-γ signaling and antigen presentation in cancer cells, largely by abolishing miR-155-targeted silencing of suppressor of cytokine signaling 1 (SOCS1). Expression of each miRNA machinery component strongly correlates with intratumoral T cell infiltration in nearly all human cancer types. Our data indicate that the evolutionarily conserved miRNA pathway can be exploited by cancer cells to escape from T cell-mediated elimination and immunotherapy.


Assuntos
Evasão da Resposta Imune , MicroRNAs/metabolismo , Neoplasias , Animais , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Heterogeneidade Genética , Humanos , Imunoterapia , Interferon gama , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/genética , Fosfoproteínas Fosfatases , Receptor de Morte Celular Programada 1 , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina , Linfócitos T
5.
Leukemia ; 33(1): 171-180, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30026574

RESUMO

Immunomodulatory drugs (IMiDs) including lenalidomide and pomalidomide bind cereblon (CRBN) and activate the CRL4CRBN ubiquitin ligase to trigger proteasomal degradation of the essential transcription factors IKZF1 and IKZF3 and multiple myeloma (MM) cytotoxicity. We have shown that CRBN is also targeted for degradation by SCFFbxo7 ubiquitin ligase. In the current study, we explored the mechanisms underlying sensitivity of MM cells to IMiDs using genome-wide CRISPR-Cas9 screening. We validate that CSN9 signalosome complex, a deactivator of Cullin-RING ubiquitin ligase, inhibits SCFFbxo7 E3 ligase-mediated CRBN degradation, thereby conferring sensitivity to IMiDs; conversely, loss of function of CSN9 signalosome activates SCFFbxo7 complex, thereby enhancing degradation of CRBN and conferring IMiD resistance. Finally, we show that pretreatment with either proteasome inhibitors or NEDD8 activating enzyme (NAE) inhibitors can abrogate degradation and maintain levels of CRBN, thereby enhancing sensitivity to IMiDs. These studies therefore demonstrate that CSN9 signalosome complex regulates sensitivity to IMiDs by modulating CRBN expression.


Assuntos
Complexo do Signalossomo COP9/metabolismo , Sistemas CRISPR-Cas , Fator de Transcrição Ikaros/metabolismo , Fatores Imunológicos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Peptídeo Hidrolases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Bortezomib/farmacologia , Complexo do Signalossomo COP9/antagonistas & inibidores , Complexo do Signalossomo COP9/genética , Ciclopentanos/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fator de Transcrição Ikaros/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Peptídeo Hidrolases/genética , Prognóstico , Proteólise , Pirimidinas/farmacologia , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases , Ubiquitinação
6.
PLoS One ; 8(5): e64237, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717575

RESUMO

The TALE (Three Amino acid Loop Extension) family consisting of Meis, Pbx and Pknox proteins is a group of transcriptional co-factors with atypical homeodomains that play pivotal roles in limb development. Compared to the in-depth investigations of Meis and Pbx protein functions, the role of Pknox2 in limb development remains unclear. Here, we showed that Pknox2 was mainly expressed in the zeugopod domain of the murine limb at E10.5 and E11.5. Misexpression of Pknox2 in the limb bud mesenchyme of transgenic mice led to deformities in the zeugopod and forelimb stylopod deltoid crest, but left the autopod and other stylopod skeletons largely intact. These malformations in zeugopod skeletons were recapitulated in mice overexpressing Pknox2 in osteochondroprogenitor cells. Molecular and cellular analyses indicated that the misexpression of Pknox2 in limb bud mesenchyme perturbed the Hox10-11 gene expression profiles, decreased Col2 expression and Bmp/Smad signaling activity in the limb. These results indicated that Pknox2 misexpression affected mesenchymal condensation and early chondrogenic differentiation in the zeugopod skeletons of transgenic embryos, suggesting Pknox2 as a potential regulator of zeugopod and deltoid crest formation.


Assuntos
Proteínas de Homeodomínio/genética , Botões de Extremidades/embriologia , Mesoderma , Fatores de Transcrição/genética , Animais , Sequência de Bases , Condrócitos/metabolismo , Primers do DNA , Botões de Extremidades/fisiologia , Camundongos , Camundongos Transgênicos , Osteoblastos/metabolismo , Células-Tronco/metabolismo
7.
FEBS Lett ; 585(19): 2992-7, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21872590

RESUMO

MiR-140 is a microRNA specially involved in chondrogenesis and osteoarthritis pathogenesis. However, its transcriptional regulation and target genes in cartilage development are not fully understood. Here we detected that miR-140 was uniquely expressed in chondrocyte and suppressed by Wnt/ß-catenin signalling. The miR-140 primary transcript was an intron-retained RNA co-expressed with Wwp2-C isoform, which was directly induced by Sox9 through binding to the intron 10 of Wwp2 gene. Knockdown of miR-140 in limb bud micromass cultures resulted in arrest of chondrogenic proliferation. Sp1, the activator of the cell cycle regulator p15(INK4b), was identified as a target of miR-140 in maintaining the chondrocyte proliferation. Collectively, our findings expand our understanding of the transcriptional regulation and the chondrogenic role of miR-140 in chondrogenesis.


Assuntos
Proliferação de Células , Condrócitos/fisiologia , MicroRNAs/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fator de Transcrição Sp1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Condrócitos/citologia , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Botões de Extremidades/anatomia & histologia , Botões de Extremidades/embriologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fatores de Transcrição SOX9/genética , Fator de Transcrição Sp1/genética , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA