Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 110(3): 735-747, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35124871

RESUMO

Systemic acquired resistance is an essential immune response that triggers a broad-spectrum disease resistance throughout the plant. In the present study, we identified a peanut lesion mimic mutant m14 derived from an ethyl methane sulfonate-mutagenized mutant pool of peanut cultivar "Yuanza9102." Brown lesions were observed in the leaves of an m14 mutant from seedling stage to maturity. Using MutMap together with bulked segregation RNA analysis approaches, a G-to-A point mutation was identified in the exon region of candidate gene Arahy.R60CUW, which is the homolog of AtNPR3 (Nonexpresser of PR genes) in Arabidopsis. This point mutation caused a transition from Gly to Arg within the C-terminal transactivation domain of AhNPR3A. The mutation of AhNPR3A showed no effect in the induction of PR genes when treated with salicylic acid. Instead, the mutation resulted in upregulation of WRKY genes and several PR genes, including pathogenesis-related thaumatin- and chitinase-encoding genes, which is consistent with the resistant phenotype of m14 to leaf spot disease. Further study on the AhNPR3A gene will provide valuable insights into understanding the molecular mechanism of systemic acquired resistance in peanut. Moreover, our results indicated that a combination of MutMap and bulked segregation RNA analysis is an effective method for identifying genes from peanut mutants.


Assuntos
Arachis , Resistência à Doença , Arachis/genética , Resistência à Doença/genética , Fenótipo , RNA
2.
Theor Appl Genet ; 135(12): 4457-4468, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181525

RESUMO

KEY MESSAGE: The candidate gene AhLBA1 controlling lateral branch angel of peanut was fine-mapped to a 136.65-kb physical region on chromosome 15 using the BSA-seq and QTL mapping. Lateral branch angel (LBA) is an important plant architecture trait of peanut, which plays key role in lodging, peg soil penetration and pod yield. However, there are few reports of fine mapping and quantitative trait loci (QTLs)/cloned genes for LBA in peanut. In this project, a mapping population was constructed using a spreading variety Tifrunner and the erect variety Fuhuasheng. Through bulked segregant analysis sequencing (BSA-seq), a major gene related to LBA, named as AhLBA1, was preliminarily mapped at the region of Chr.15: 150-160 Mb. Then, using traditional QTL approach, AhLBA1 was narrowed to a 1.12 cM region, corresponding to a 136.65-kb physical interval of the reference genome. Of the nine genes housed in this region, three of them were involved in hormone metabolism and regulation, including one "F-box protein" and two "2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase (2OG oxygenase)" encoding genes. In addition, we found that the level of some classes of cytokinin (CK), auxin and ethylene showed significant differences between spreading and erect peanuts at the junction of main stem and lateral branch. These findings will aid further elucidation of the genetic mechanism of LBA in peanut and facilitating marker-assisted selection (MAS) in the future breeding program.


Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Fenótipo , Oxigenases/genética
3.
Genomics ; 113(3): 1579-1588, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33819563

RESUMO

The perennial ornamental peanut Arachis glabrata represents one of the most adaptable wild Arachis species. This study used PacBio combined with BGISEQ-500 RNA-seq technology to study the transcriptome and gene expression dynamics of A. glabrata. Of the total 109,747 unique transcripts obtained, >90,566 transcripts showed significant homology to known proteins and contained the complete coding sequence (CDS). RNA-seq revealed that 1229, 1039, 1671, 3923, 1521 and 1799 transcripts expressed specifically in the root, stem, leaf, flower, peg and pod, respectively. We also identified thousands of differentially expressed transcripts in response to drought, salt, cold and leaf spot disease. Furthermore, we identified 30 polyphenol oxidase encoding genes associated with the quality of forage, making A. glabrata suitable as a forage crop. Our findings presented the first transcriptome study of A. glabrata which will facilitate genetic and genomics studies and lays the groundwork for a deeper understanding of the A. glabrata genome.


Assuntos
Arachis , Perfilação da Expressão Gênica , Arachis/genética , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Transcriptoma
4.
J Exp Bot ; 72(7): 2501-2513, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33476386

RESUMO

Ribosomes are required for plant growth and development, and ribosome biogenesis-deficient mutants generally display auxin-related phenotypes. Although the relationship between ribosome dysfunction and auxin is known, many aspects of this subject remain to be understood. We previously reported that MIDASIN 1 (MDN1) is an essential pre-60S ribosome biogenesis factor (RBF) in Arabidopsis. In this study, we further characterized the aberrant auxin-related phenotypes of mdn1-1, a weak mutant allele of MDN1. Auxin response is disturbed in both shoots and roots of mdn1-1, as indicated by the DR5:GUS reporter. By combining transcriptome profiling analysis and reporter gene detection, we found that expression of genes involved in auxin biosynthesis, transport, and signaling is changed in mdn1-1. Furthermore, MDN1 deficiency affects the post-transcriptional regulation and protein distribution of PIN-FORMED 2 (PIN2, an auxin efflux facilitator) in mdn1-1 roots. These results indicate that MDN1 is required for maintaining the auxin system. More interestingly, MDN1 is an auxin-responsive gene, and its promoter can be targeted by multiple AUXIN RESPONSE FACTORs (ARFs), including ARF7 and ARF19, in vitro. Indeed, in arf7 arf19, the auxin sensitivity of MDN1 expression is significantly reduced. Together, our results reveal a coordination mechanism between auxin and MDN1-dependent ribosome biogenesis for regulating plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos , Ribossomos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Chaperonas Moleculares , Desenvolvimento Vegetal , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Ribossomos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Genet Genomics ; 50(11): 815-834, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741566

RESUMO

Common wheat (Triticum aestivum) is one of the most widely cultivated and consumed crops globally. In the face of limited arable land and climate changes, it is a great challenge to maintain current and increase future wheat production. Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition. However, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species, thereby opening up new possibilities for biotechnology and breeding. In this review, we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat, emphasizing recent breakthroughs in precise and multiplex genome editing. We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells. Furthermore, we summarize the recent applications and advancements of CRISPR/Cas technologies for wheat improvement. Lastly, we discuss the remaining challenges specific to wheat genome editing and its future prospects.


Assuntos
Sistemas CRISPR-Cas , Triticum , Sistemas CRISPR-Cas/genética , Triticum/genética , Genoma de Planta/genética , Melhoramento Vegetal , Edição de Genes/métodos
6.
Genome Biol ; 24(1): 156, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386475

RESUMO

Prime editing is limited by low efficiency in plants. Here, we develop an upgraded engineered plant prime editor in hexaploid wheat, ePPEplus, by introducing a V223A substitution into reverse transcriptase in the ePPEmax* architecture. ePPEplus enhances the efficiency by an average 33.0-fold and 6.4-fold compared to the original PPE and ePPE, respectively. Importantly, a robust multiplex prime editing platform is established for simultaneous editing of four to ten genes in protoplasts and up to eight genes in regenerated wheat plants at frequencies up to 74.5%, thus expanding the applicability of prime editors for stacking of multiple agronomic traits.


Assuntos
Agricultura , Triticum , Triticum/genética , Fenótipo
7.
Genes (Basel) ; 13(5)2022 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35627225

RESUMO

Lateral branch angle (LBA), or branch habit, is one of the most important agronomic traits in peanut. To date, the underlying molecular mechanisms of LBA have not been elucidated in peanut. To acquire the differentially expressed genes (DEGs) related to LBA, a TI population was constructed through the hybridization of a bunch-type peanut variety Tifrunner and prostrate-type Ipadur. We report the identification of DEGs related to LBA by sequencing two RNA pools, which were composed of 45 F3 lines showing an extreme opposite bunch and prostrate phenotype. We propose to name this approach Bulk RNA-sequencing (BR-seq) as applied to several plant species. Through BR-seq analysis, a total of 3083 differentially expressed genes (DEGs) were identified, including 13 gravitropism-related DEGs, 22 plant hormone-related DEGs, and 55 transcription factors-encoding DEGs. Furthermore, we also identified commonly expressed alternatively spliced (AS) transcripts, of which skipped exon (SE) and retained intron (RI) were most abundant in the prostrate and bunch-type peanut. AS isoforms between prostrate and bunch peanut highlighted important clues to further understand the post-transcriptional regulatory mechanisms of branch angle regulation. Our findings provide not only important insights into the landscape of the regulatory pathway involved in branch angle formation but also present practical information for peanut molecular breeding in the future.


Assuntos
Arachis , Transcriptoma , Arachis/genética , Arachis/metabolismo , RNA/metabolismo , RNA-Seq , Análise de Sequência de RNA
8.
Front Genet ; 13: 845602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401655

RESUMO

Peanut is one of the most important cash crops with high quality oil, high protein content, and many other nutritional elements, and grown globally. Cultivated peanut (Arachis hypogaea L.) is allotetraploid with a narrow genetic base, and its genetics and molecular mechanisms controlling the agronomic traits are poorly understood. Here, we report a comprehensive genome variation map based on the genotyping of a panel of 178 peanut cultivars using Axiom_Arachis2 SNP array, including 163 representative varieties of different provinces in China, and 15 cultivars from 9 other countries. According to principal component analysis (PCA) and phylogenetic analysis, the peanut varieties were divided into 7 groups, notable genetic divergences between the different areas were shaped by environment and domestication. Using genome-wide association study (GWAS) analysis, we identified several marker-trait associations (MTAs) and candidate genes potentially involved in regulating several agronomic traits of peanut, including one MTA related with hundred seed weight, one MTA related with total number of branches, and 14 MTAs related with pod shape. This study outlines the genetic basis of these peanut cultivars and provides 13,125 polymorphic SNP markers for further distinguishing and utility of these elite cultivars. In addition, the candidate loci and genes provide valuable information for further fine mapping of QTLs and improving the quality and yield of peanut using a genomic-assisted breeding method.

9.
Front Plant Sci ; 10: 1118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552080

RESUMO

Seed germination and formation are the beginning and ending, respectively, of a plant life cycle. These two processes are under fine regulation by the internal genetic information. Previously, we demonstrated that Arabidopsis MIDASIN 1 (MDN1) is required for ribosome biogenesis, and its dysfunction leads to pleiotropic developmental phenotypes, including impaired embryogenesis and slow seed germination. In this study, we further found that the weak mutant of MDN1, mdn1-1, exhibits an increased seed size phenotype. Seed proteomic analysis reveals that a number of proteins involved in seed development and response to external environments are mis-regulated by the MDN1 dysfunction. Many 2S seed storage proteins (SSPs) and late embryogenesis abundant (LEA) proteins are over-accumulated in the dry seeds of mdn1-1. Further, some genes encoding seed storage reserves are also upregulated in mdn1-1 seedlings. More interestingly, abscisic acid-insensitive 5 (ABI5) is over-accumulated in mdn1-1 seeds, and the loss of its function partially rescues the low seed germination rate of mdn1-1. Together, this study further demonstrates that MDN1 is essential for establishing a normal seed proteome, and its mutation triggers ABI5-mediated repression of seed germination.

10.
Electron. j. biotechnol ; 44: 25-32, Mar. 2020. graf, tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1087637

RESUMO

BACKGROUND: Cultivated peanut (Arachis hypogaea. L) represents one of the most important oil crops in the world. Although much effort has been expended to characterize microsatellites or Simple Sequence Repeats (SSRs) in peanut, the quantity and quality of the markers in breeding applications remain limited. Here, genome-wide SSR characterization and marker development were performed using the recently assembled genome of the cultivar Tifrunner. RESULTS: In total, 512,900 microsatellites were identified from 2556.9-Mb genomic sequences. Based on the flanking sequences of the identified microsatellites, 7757 primer pairs (markers) were designed, and further evaluated in the assembled genomic sequences of the tetraploid Arachis cultivars, Tifrunner and Shitouqi, and the diploid ancestral species, A. duranensis and A. ipaensis. In silico PCR analysis showed that the SSR markers had high amplification efficiency and polymorphism in four Arachis genotypes. Notably, nearly 60% of these markers were single-locus SSRs in tetraploid Arachis species, indicating they are more specific in distinguishing the alleles of the A and B sub-genomes of peanut. In addition, two markers closely related with purple testa color and 27 markers near to FAD2 genes were identified, which could be used for breeding varieties with purple testa and high-oleic acid content, respectively. Moreover, the potential application of these SSR markers in tracking introgressions from Arachis wild relatives was discussed. CONCLUSIONS: This study reported the development of genomic SSRs from assembled genomic sequences of the tetraploid Arachis Tifrunner, which will be useful for diversity analysis, genetic mapping and functional genomics studies in peanut


Assuntos
Arachis/genética , Cruzamento/métodos , Repetições de Microssatélites , Polimorfismo Genético , Marcadores Genéticos , Reação em Cadeia da Polimerase , Genoma , Produtos Agrícolas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA