Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Neurochem Res ; 49(5): 1268-1277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38337134

RESUMO

Electroacupuncture (EA) effectively improves arthritis-induced hyperalgesia and allodynia by repressing spinal microglial activation, which plays a crucial role in pain hypersensitivity following tissue inflammation. However, the mechanism by which EA suppresses spinal microglial activation in monoarthritis (MA) remains unclear. In the present study, a rat model of MA was established through unilateral ankle intra-articular injection of complete Freund's adjuvant (CFA). The relationship among P2Y12 receptor (P2Y12R) expression, spinal microglial activation, and EA analgesia was investigated using quantitative real-time PCR (qRT‒PCR), western blotting, immunofluorescence (IF), and behavioral testing. The results found that EA treatment at the ipsilateral "Huantiao" (GB30) and "Yanglingquan" (GB34) acupoints markedly attenuated pain and spinal microglia M1 polarization in MA rats. In particular, P2Y12R expression was significantly increased at the mRNA and protein levels in the spinal dorsal horn in MA rats, whereas EA treatment effectively repressed the MA-induced upregulation of P2Y12R. IF analysis further revealed that most P2Y12R was expressed in microglia in the spinal dorsal horn. Pharmacological inhibition of P2Y12R by its antagonist (AR-C69931MX) decreased MA-induced spinal microglial activation and subsequent proinflammatory cytokine production. Consequently, AR-C69931MX significantly intensified the anti-pain hypersensitive function of EA in MA rats. Taken together, these results demonstrate that EA alleviates MA-induced pain by suppressing P2Y12R-dependent microglial activation.


Assuntos
Artrite , Eletroacupuntura , Ratos , Animais , Microglia/metabolismo , Ratos Sprague-Dawley , Eletroacupuntura/métodos , Medula Espinal/metabolismo , Dor/induzido quimicamente , Dor/metabolismo , Hiperalgesia/terapia , Hiperalgesia/tratamento farmacológico , Artrite/metabolismo , Artrite/terapia
2.
Brain Topogr ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990422

RESUMO

Shooting is a fine sport that is greatly influenced by mental state, and the neural activity of brain in the preparation stage of shooting has a direct influence on the level of shooting. In order to explore the brain neural mechanism in the preparation stage of pistol shooting under audiovisual restricted conditions, and to reveal the intrinsic relationship between brain activity and shooting behavior indicators, the electroencephalography (EEG) signals and seven shooting behaviors including shooting performance, gun holding stability, and firing stability, were experimentally captured from 30 shooters, these shooters performed pistol shooting under three conditions, normal, dim, and noisy. Using EEG microstates combined with standardized low-resolution brain electromagnetic tomography (sLORETA) traceability analysis method, we investigated the difference between the microstates characteristics under audiovisual restricted conditions and normal condition, the relationship between the microstates characteristics and the behavioral indicators during the shooting preparation stage under different conditions. The experimental results showed that microstate 1 corresponded to microstate A, microstate 2 corresponded to microstate B, and microstate 4 corresponded to microstate D; Microstate 3 was a unique template, which was localized in the occipital lobe, its function was to generate the "vision for action"; The dim condition significantly reduced the shooter's performance, whereas the noisy condition had less effect on the shooter's performance; In audiovisual restricted conditions, the microstate characteristics were significantly different from those in the normal condition. Microstate 4' parameters decreased significantly while microstate 3' parameters increased significantly under restricted visual and auditory conditions; Dim condition required more shooting skills from the shooter; There was a significant relationship between characteristics of microstates and indicators of shooting behavior; It was concluded that in order to obtain good shooting performance, shooters should improve attention and concentrate on the adjustment of collimator and target's center leveling relation, but the focus was slightly different in the three conditions; Microstates that are more important for accomplishing the task have less variation in their characteristics over time; Similar conclusions to previous studies were obtained at the same time, i.e., increased visual attention prior to shooting is detrimental to shooting performance, and there is a high positive correlation with microstate D for task completion. The experimental results further reveal the brain neural mechanism in the shooting preparation stage, and the extracted neural markers can be used as effective functional indicators for monitoring the brain state in the shooting preparation stage of pistols.

3.
Int J Neuropsychopharmacol ; 26(12): 840-855, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37774423

RESUMO

BACKGROUND: Suicidal behaviors have become a serious public health concern globally due to the economic and human cost of suicidal behavior to individuals, families, communities, and society. However, the underlying etiology and biological mechanism of suicidal behavior remains poorly understood. METHODS: We collected different single omic data, including single-cell RNA sequencing (scRNA-seq), bulk mRNA-seq, DNA methylation microarrays from the cortex of Major Depressive Disorder (MDD) in suicide subjects' studies, as well as fluoxetine-treated rats brains. We matched subject IDs that overlapped between the transcriptome dataset and the methylation dataset. The differential expression genes and differentially methylated regions were calculated with a 2-group comparison analysis. Cross-omics analysis was performed to calculate the correlation between the methylated and transcript levels of differentially methylated CpG sites and mapped transcripts. Additionally, we performed a deconvolution analysis for bulk mRNA-seq and DNA methylation profiling with scRNA-seq as the reference profiles. RESULTS: Difference in cell type proportions among 7 cell types. Meanwhile, our analysis of single-cell sequence from the antidepressant-treated rats found that drug-specific differential expression genes were enriched into biological pathways, including ion channels and glutamatergic receptors. CONCLUSIONS: This study identified some important dysregulated genes influenced by DNA methylation in 2 brain regions of depression and suicide patients. Interestingly, we found that oligodendrocyte precursor cells (OPCs) have the most contributors for cell-type proportions related to differential expression genes and methylated sites in suicidal behavior.


Assuntos
Transtorno Depressivo Maior , Suicídio , Humanos , Animais , Ratos , Metilação de DNA , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Análise da Expressão Gênica de Célula Única , Encéfalo/metabolismo , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica
4.
Purinergic Signal ; 19(3): 481-487, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36529845

RESUMO

Neuropathic pain is a refractory pain state, and its mechanism is still not clear. Previous studies have shown that the purine receptor P2X4R expressed on hyperactive microglia in the spinal cord is essential for the occurrence and development of neuropathic pain. The cerebrospinal fluid-contacting nucleus (CSF-contacting nucleus) in the midbrain has been found to play an important role in the descending inhibition system of modulation. However, there have been no studies on P2X4R in the CSF-contacting nucleus involved in neuropathic pain. To investigate whether P2X4R is expressed in the CSF-contacting nucleus and whether its expression in the CSF-contacting nucleus is involved in the regulation of neuropathic pain, we used a model of chronic sciatic nerve ligation injury (CCI) to simulate neuropathic pain conditions. Immunohistochemistry experiments were conducted to identify the expression of P2X4R in the CSF-contacting nuclei in CCI rats, and western blot analysis showed a significant increase in P2X4R levels 7 days after modeling. Then, we packaged a P2rx4 gene-targeting shRNA in scAAV9 to knock down the P2X4R level in the CSF-contacting nucleus, and we found that CCI-induced mechanical hyperalgesia was reversed. In conclusion, P2X4R expressed in the CSF-contacting nucleus is involved in the process of neuropathic pain, and downregulating P2X4R protein in the CSF-contacting nucleus can reverse the occurrence and development of hyperalgesia, which could represent a potent therapeutic strategy for neuropathic pain.


Assuntos
Hiperalgesia , Neuralgia , Ratos , Animais , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Constrição , Neuralgia/metabolismo , Mesencéfalo/metabolismo , Receptores Purinérgicos P2X4/metabolismo
5.
Molecules ; 27(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500347

RESUMO

COVID-19 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel highly contagious and pathogenic coronavirus that emerged in late 2019. SARS-CoV-2 spreads primarily through virus-containing droplets and small particles of air pollution, which greatly increases the risk of inhaling these virus particles when people are in close proximity. COVID-19 is spreading across the world, and the COVID-19 pandemic poses a threat to human health and public safety. To date, there are no specific vaccines or effective drugs against SARS-CoV-2. In this review, we focus on the enzyme targets of the virus and host that may be critical for the discovery of chemical compounds and natural products as antiviral drugs, and describe the development of potential antiviral drugs in the preclinical and clinical stages. At the same time, we summarize novel emerging technologies applied to the research on new drug development and the pathological mechanisms of COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Tecnologia
6.
Br J Haematol ; 190(2): 274-283, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32103499

RESUMO

About 25% of patients with newly diagnosed acute myeloid leukaemia (AML) have normal cytogenetics and no nucleophosmin 1 (NPM1) mutation or Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD). The prognosis and best therapy for these patients is controversial. We evaluated 158 newly diagnosed adults with this genotype who achieved histological complete remission within two cycles of induction therapy and were assigned to two post-remission strategies with and without an allotransplant. Targeted regional sequencing at diagnosis was performed and data were used to estimate their prognosis, including relapse and survival. In multivariable analyses, having wild-type or mono-allelic mutated CCAAT/enhancer-binding protein alpha (CEBPA) [hazard ratio (HR) 2·39, 95% confidence interval (CI) 1·08-5·30; P = 0·032), mutated NRAS (HR 2·67, 95% CI 1·36-5·25; P = 0·004), mutated colony-stimulating factor 3 receptor (CSF3R) (HR 2·85, 95% CI 1·12-7·27; P = 0·028) and a positive measurable residual disease (MRD)-test after the second consolidation cycle (HR 2·88, 95% CI 1·32-6·30; P = 0·008) were independently correlated with higher cumulative incidence of relapse (CIR). These variables were also significantly associated with worse survival (HR 3·02, 95% CI 1·17-7·78, P = 0·022; HR 3·62, 95% CI 1·51-8·68, P = 0·004; HR 3·14, 95% CI 1·06-9·31, P = 0·039; HR 4·03, 95% CI 1·64-9·89, P = 0·002; respectively). Patients with ≥1 of these adverse-risk variables benefitted from a transplant, whereas the others did not. In conclusion, we identified variables associated with CIR and survival in patients with AML and normal cytogenetics without a NPM1 mutation or FLT3-ITD.


Assuntos
Análise Citogenética/métodos , Leucemia Mieloide Aguda/genética , Adolescente , Adulto , Idoso , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Nucleofosmina , Sequências de Repetição em Tandem , Adulto Jovem
7.
Eur J Haematol ; 105(2): 185-195, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32282962

RESUMO

BACKGROUND: Currently, the prognostic stratification and therapeutic evaluation systems for multiple myeloma (MM) lack specific molecular indicators. OC-STAMP is a new gene and is also highly expressed in MM. METHODS: A total of 160 MM patients have been investigated with both quantitative reverse transcription PCR (RT-qPCR), flow cytometry (FCM) and cytogenetic FISH on the same mononuclear cells isolated from bone marrow specimens. RESULTS: We found that OC-STAMP mRNA levels were significantly higher in newly diagnosed cases of MM than in healthy donors (median, 0.52% vs. 0.02%, P < .001). Moreover, the changes in the OC-STAMP mRNA levels paralleled the disease stages and minimal residual disease, as detected by FCM. Furthermore, we found that patients with high OC-STAMP mRNA levels were more likely to develop ≥3 bone lesions, be diagnosed with Durie-Salmon stages III, and have the P53 (17p13) deletion. In addition, advanced stage patients with high OC-STAMP mRNA levels had a lower 4-year progression-free survival (5.6% vs. 22.9%, P = .0055) and a worse 4-year overall survival (25.8% vs. 48.8%, P = .0137) compared to patients with low mRNA levels of this indicator. CONCLUSIONS: OC-STAMP may be a promising molecular indicator to monitor treatment effects and participate in the prognostic stratification of MM.


Assuntos
Biomarcadores Tumorais , Proteínas de Membrana/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Medula Óssea/patologia , Linhagem Celular Tumoral , Aberrações Cromossômicas , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Imunofenotipagem , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/terapia , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , Análise de Sobrevida , Translocação Genética , Proteína Supressora de Tumor p53/genética
8.
J Nanosci Nanotechnol ; 19(9): 5707-5712, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30961728

RESUMO

Porous photocatalysts have attracted significant attention for their large specific surface area, numerous surface catalytic active sites, and high photocatalytic activity. In this study, porous SrTiO3/TiO2 composites were successfully fabricated through a hydrothermal approach utilizing porous TiO2 as a substrate. The as-synthesized SrTiO3/TiO2 composites were then characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, Brunauer-Emmett-Teller (BET), and ultraviolet-visible spectroscopy (UV-Vis) analysis. The results of SEM and BET indicate that such composites have a porous structure and large surface area. Compared to unadulterated TiO2, SrTiO3 /TiO2 composites exhibit higher photocatalytic performance for the photodegradation of rhodamine B under UV-Vis irradiation. Additionally, it was found that when the content of SrTiO3 reaches 20%, it achieves the maximum photodegradation efficiency of 98.6% under UV-Vis irradiation over 60 min. These results demonstrate that SrTiO3/TiO2 composites are a promising material in terms of environmental cleanliness.

9.
Neurochem Res ; 43(4): 869-877, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29411262

RESUMO

How oxidative stress contributes to neuro-inflammation and chronic pain is documented, and methane is reported to protect against ischemia-reperfusion injury in the nervous system via anti-inflammatory and antioxidant properties. We studied whether methane in the form of methane rich saline (MS) has analgesic effects in a monoarthritis (MA) rat model of chronic inflammatory pain. Single and repeated injections of MS (i.p.) reduced MA-induced mechanical allodynia and multiple methane treatments blocked activation of glial cells, decreased IL-1ß and TNF-α production and MMP-2 activity, and upregulated IL-10 expression in the spinal cord on day 10 post-MA. Furthermore, MS reduced infiltrating T cells and expression of IFN-γ and suppressed MA-induced oxidative stress (MDA and 8-OHDG), and increased superoxide dismutase and catalase activity. Thus, MS may offer anti-inflammatory and antioxidant effects to reduce chronic inflammatory pain.


Assuntos
Analgésicos/administração & dosagem , Dor Crônica/tratamento farmacológico , Modelos Animais de Doenças , Mediadores da Inflamação/antagonistas & inibidores , Metano/administração & dosagem , Cloreto de Sódio/administração & dosagem , Animais , Dor Crônica/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 33(5): 713-6, 2016 Oct.
Artigo em Zh | MEDLINE | ID: mdl-27577230

RESUMO

CRISPR/Cas9 technology originated from type II CRISPR/Cas system, which is widely found in bacteria and equips them with acquired immunity against viruses and plasmids. CRISPR-associated protein Cas9 is a RNA-guided endonuclease, which can efficiently introduce double-strand breaks at specific sites and activate homologous recombination and/or non-homologous end joining mechanism for the repair of impaired DNA. Features such as easy-to-use, cost-effectiveness, multiple targeting ability have made it the third-generation genomic engineering tool following ZFNs and TALENs. Here the history of discovery and molecular mechanism of the CRISPR/Cas9 technology are reviewed. The rapid advance in its various applications, especially for the treatment of human genetic disorders, as well as some concomitant problems are discussed.


Assuntos
Pesquisa Biomédica/métodos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma Humano/genética , Pesquisa Biomédica/tendências , Humanos , Modelos Genéticos , Reprodutibilidade dos Testes
11.
Genes (Basel) ; 15(4)2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38674402

RESUMO

In recent years, the FDA has approved numerous anti-cancer drugs that are mutation-based for clinical use. These drugs have improved the precision of treatment and reduced adverse effects and side effects. Personalized therapy is a prominent and hot topic of current medicine and also represents the future direction of development. With the continuous advancements in gene sequencing and high-throughput screening, research and development strategies for personalized clinical drugs have developed rapidly. This review elaborates the recent personalized treatment strategies, which include artificial intelligence, multi-omics analysis, chemical proteomics, and computation-aided drug design. These technologies rely on the molecular classification of diseases, the global signaling network within organisms, and new models for all targets, which significantly support the development of personalized medicine. Meanwhile, we summarize chemical drugs, such as lorlatinib, osimertinib, and other natural products, that deliver personalized therapeutic effects based on genetic mutations. This review also highlights potential challenges in interpreting genetic mutations and combining drugs, while providing new ideas for the development of personalized medicine and pharmacogenomics in cancer study.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Farmacogenética , Medicina de Precisão , Medicina de Precisão/métodos , Humanos , Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapêutico , Farmacogenética/métodos , Mutação
12.
Front Pediatr ; 12: 1406772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903771

RESUMO

Background: West syndrome (WS) is a devastating epileptic encephalopathy with onset in infancy and early childhood. It is characterized by clustered epileptic spasms, developmental arrest, and interictal hypsarrhythmia on electroencephalogram (EEG). Hypsarrhythmia is considered the hallmark of WS, but its visual assessment is challenging due to its wide variability and lack of a quantifiable definition. This study aims to analyze the EEG patterns in WS and identify computational diagnostic biomarkers of the disease. Method: Linear and non-linear features derived from EEG recordings of 31 WS patients and 20 age-matched controls were compared. Subsequently, the correlation of the identified features with structural and genetic abnormalities was investigated. Results: WS patients showed significantly elevated alpha-band activity (0.2516 vs. 0.1914, p < 0.001) and decreased delta-band activity (0.5117 vs. 0.5479, p < 0.001), particularly in the occipital region, as well as globally strengthened theta-band activity (0.2145 vs. 0.1655, p < 0.001) in power spectrum analysis. Moreover, wavelet-bicoherence analysis revealed significantly attenuated cross-frequency coupling in WS patients. Additionally, bi-channel coherence analysis indicated minor connectivity alterations in WS patients. Among the four non-linear characteristics of the EEG data (i.e., approximate entropy, sample entropy, permutation entropy, and wavelet entropy), permutation entropy showed the most prominent global reduction in the EEG of WS patients compared to controls (1.4411 vs. 1.5544, p < 0.001). Multivariate regression results suggested that genetic etiologies could influence the EEG profiles of WS, whereas structural factors could not. Significance: A combined global strengthening of theta activity and global reduction of permutation entropy can serve as computational EEG biomarkers for WS. Implementing these biomarkers in clinical practice may expedite diagnosis and treatment in WS, thereby improving long-term outcomes.

13.
J Diabetes ; 16(1): e13475, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37721125

RESUMO

PURPOSE: Though exercise generates beneficial effects on diabetes-associated cardiac damage, the underlying mechanism is largely unclear. Therefore, we prescribed a program of 8-week treadmill training for type 2 diabetes mellitus (T2DM) rats and determined the role of irisin signaling, via interacting with AMP-activated protein kinase (AMPK), in mediating the effects of exercise on myocardial injuries and mitochondrial fission. METHODS: Forty 8-week-old male Wistar rats were randomly divided into groups of control (Con), diabetes mellitus (DM), diabetes plus exercise (Ex), and diabetes plus exercise and Cyclo RGDyk (ExRg). Ex and ExRg rats received 8 weeks of treadmill running, and the rats in the ExRg group additionally were treated with a twice weekly injection of Cyclo RGDyk, an irisin receptor-αV/ß5 antagonist. At the end of the experiment, murine blood samples and heart tissues were collected and analyzed with methods of ELISA, Western blot, real-time quantitative polymerase chain reaction, as well as immunofluorescence staining. RESULTS: Exercise effectively mitigated T2DM-related hyperglycemia, hyperinsulinemia, lipid dysmetabolism, and inflammation, which could be diminished by Cyclo RGDyk treatment. Additionally, exercise alleviated T2DM-induced myocardial injury and excessive mitochondrial fission, whereas the beneficial effects were blocked by the administration of Cyclo RGDyk. T2DM significantly decreased serum irisin concentrations and fibronectin type III domain-containing protein 5 (FNDC5)/irisin gene and protein expression levels in the rat heart, whereas exercise could rescue T2DM-reduced FNDC5/irisin expression. Blocking irisin receptor signaling diminished the exercise-alleviated mitochondrial fission protein expression and elevated AMPK phosphorylation. CONCLUSION: Exercise is effective in mitigating diabetes-related insulin resistance, metabolic dysfunction, and inflammation. Irisin signaling engages in exercise-associated beneficial effects on myocardial injury and excessive mitochondrial fission in diabetes rats involving elevated AMPK phosphorylation.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Camundongos , Masculino , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/complicações , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Fosforilação , Dinâmica Mitocondrial , Diabetes Mellitus Experimental/complicações , Ratos Wistar , Inflamação
14.
Acupunct Med ; 42(3): 123-132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38813841

RESUMO

BACKGROUND: Electroacupuncture (EA) has been reported to improve intestinal motility in mice with postoperative ileus (POI). Previous studies, however, have yielded heterogeneous results regarding the effect of EA on POI. METHODS: Herein, a POI mouse model was constructed by intestinal manipulation. To evaluate the effect of EA treatment on colonic transit, the levels of inflammatory markers (macrophage inflammatory protein (MIP)-1α, interleukin (IL)-1ß, IL-6, monocyte chemotactic protein (MCP)-1 and intercellular adhesion molecule (ICAM)-1) were detected by enzyme-linked immunosorbent assay (ELISA); immune cell infiltration was detected by immunohistochemical staining of myeloperoxidase (MPO), ectodysplasin (ED)-1 and ED-2, and the percentage of CD4+ interferon (IFN)-γ+ Th1 cells and IFN-γ secretion levels were determined. Activated Th1 cells and pentoxifylline, a cell differentiation inhibitor, were used to assess the role of Th1 cells in EA treatment of POI. Neostigmine administration and unilateral vagotomy were performed to confirm whether the effects of EA treatment on Th1 cells were mediated by the vagus nerve (VN). RESULTS: The results revealed that EA treatment at ST36 improved POI, as indicated by a decreased level of inflammatory-related markers and immune cell infiltration and shortened colonic transit time. The activated Th1 cells abolished the effects of EA treatment on POI. The effects of EA treatment on POI were enhanced by stimulation of the VN along with a decreased level of Th1 cells, but these effects were abolished by vagotomy along with an increased percentage of Th1 cells; this result indicates that the VN mediates the role of Th1 cells in the effects of EA treatment of POI. CONCLUSION: Our findings showed that the effects of EA treatment of POI were mainly mediated by Th1 cells through the stimulation of the VN and inhibition of the inflammatory response.


Assuntos
Eletroacupuntura , Íleus , Complicações Pós-Operatórias , Células Th1 , Nervo Vago , Animais , Células Th1/imunologia , Camundongos , Íleus/terapia , Íleus/imunologia , Nervo Vago/imunologia , Masculino , Humanos , Complicações Pós-Operatórias/terapia , Complicações Pós-Operatórias/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Interferon gama/metabolismo , Interferon gama/imunologia , Interleucina-6/metabolismo , Interleucina-6/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Interleucina-1beta/metabolismo , Inflamação/terapia
15.
Clin Exp Med ; 24(1): 56, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546916

RESUMO

B cell acute lymphoblastic leukemia (ALL) is characterized by the highly heterogeneity of pathogenic genetic background, and there are still approximately 30-40% of patients without clear molecular markers. To identify the dysregulated genes in B cell ALL, we screened 30 newly diagnosed B cell ALL patients and 10 donors by gene expression profiling chip. We found that ECM1 transcription level was abnormally elevated in newly diagnosed B cell ALL and further verified in another 267 cases compared with donors (median, 124.57% vs. 7.14%, P < 0.001). ROC analysis showed that the area under the curve of ECM1 transcription level at diagnosis was 0.89 (P < 0.001). Patients with BCR::ABL1 and IKZF1 deletion show highest transcription level (210.78%) compared with KMT2A rearrangement (39.48%) and TCF3::PBX1 rearrangement ones (30.02%) (all P < 0.05). Also, the transcription level of ECM1 was highly correlated with the clinical course, as 20 consecutive follow-up cases indicated. The 5-year OS of patients (non-KMT2A and non-TCF3::PBX1 rearrangement) with high ECM1 transcription level was significantly worse than the lower ones (18.7% vs. 72.9%, P < 0.001) and high ECM1 transcription level was an independent risk factor for OS (HR = 5.77 [1.75-19.06], P = 0.004). After considering transplantation, high ECM1 transcription level was not an independent risk factor, although OS was still poor (low vs. high, 71.1% vs. 56.8%, P = 0.038). Our findings suggested that ECM1 may be a potential molecular marker for diagnosis, minimal residual disease (MRD) monitoring, and prognosis prediction of B cell ALL.Trial registration Trial Registration Registered in the Beijing Municipal Health Bureau Registration N 2007-1007 and in the Chinese Clinical Trial Registry [ChiCTR-OCH-10000940 and ChiCTR-OPC-14005546]; http://www.chictr.org.cn .


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Prognóstico , Biomarcadores , Fatores de Risco , Proteínas da Matriz Extracelular/genética
16.
Cancer Lett ; 598: 217104, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969163

RESUMO

Results of measurable residual disease (MRD)-testing by next-generation sequencing (NGS) correlate with relapse risk in adults with B-cell acute lymphoblastic leukemia (ALL) receiving chemotherapy or an allotransplant from a human leukocyte antigen (HLA)-identical relative or HLA-matched unrelated donor. We studied cumulative incidence of relapse (CIR) and survival prediction accuracy using a NGS-based MRD-assay targeting immunoglobulin genes after 2 courses of consolidation chemotherapy cycles in 93 adults with B-cell ALL most receiving HLA-haplotype-matched related transplants. Prediction accuracy was compared with MRD-testing using multi-parameter flow cytometry (MPFC). NGS-based MRD-testing detected residual leukemia in 28 of 65 subjects with a negative MPFC-based MRD-test. In Cox regression multi-variable analyses subjects with a positive NGS-based MRD-test had a higher 3-year CIR (Hazard Ratio [HR] = 3.37; 95 % Confidence Interval [CI], 1.34-8.5; P = 0.01) and worse survival (HR = 4.87 [1.53-15.53]; P = 0.007). Some data suggest a lower CIR and better survival in NGS-MRD-test-positive transplant recipients but allocation to transplant was not random. Our data indicate MRD-testing by NGS is more accurate compared with testing by MPFC in adults with B-cell ALL in predicting CIR and survival. (Registered in the Beijing Municipal Health Bureau Registration N 2007-1007 and in the Chinese Clinical Trial Registry [ChiCTR-OCH-10000940 and ChiCTROPC-14005546]).

17.
Sci Rep ; 13(1): 2488, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781900

RESUMO

In recent years, postmortem brain studies have revealed that some molecular, cellular, and circuit changes associated with suicide, have an independent or additive effect on depression. The aim of the present study is to identify potential phenotypic, tissue, and sex-specific novel targets and pathways to distinguish depression or suicide from major depressive disorder (MDD) comorbid with suicide. The mRNA expression profiling datasets from two previous independent postmortem brain studies of suicide and depression (GSE102556 and GSE101521) were retrieved from the GEO database. Machine learning analysis was used to differentiate three regrouped gene expression profiles, i.e., MDD with suicide, MDD without suicide, and suicide without depression. Weighted correlation network analysis (WGCNA) was further conducted to identify the key modules and hub genes significantly associated with each of these three sub-phenotypes. TissueEnrich approaches were used to find the essential brain tissues and the difference of tissue enriched genes between depression with or without suicide. Dysregulated gene expression cross two variables, including phenotypes and tissues, were determined by global analysis with Vegan. RRHO analysis was applied to examine the difference in global expression pattern between male and female groups. Using the optimized machine learning model, several ncRNAs and mRNAs with higher AUC and MeanDecreaseGini, including GCNT1P1 and AC092745.1, etc., were identified as potential molecular targets to distinguish suicide with, or without MDD and depression without suicide. WGCNA analysis identified some key modules significantly associated with these three phenotypes, and the gene biological functions of the key modules mainly relate to ncRNA and miRNA processing, as well as oxidoreductase and dehydrogenase activity. Hub genes such as RP11-349A22.5, C20orf196, MAPK8IP3 and RP11-697N18.2 were found in these key modules. TissueEnrich analysis showed that nucleus accumbens and subiculum were significantly changed among the 6 brain regions studied. Global analysis with Vegan and RRHO identified PRS26, ARNT and SYN3 as the most significantly differentially expressed genes across phenotype and tissues, and there was little overlap between the male and female groups. In this study, we have identified novel gene targets, as well as annotated functions of co-expression patterns and hub genes that are significantly distinctive between depression with suicide, depression without suicide, and suicide without depression. Moreover, global analysis across three phenotypes and tissues confirmed the evidence of sex difference in mood disorders.


Assuntos
Transtorno Depressivo Maior , Suicídio , Masculino , Feminino , Humanos , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Depressão/diagnóstico , Depressão/genética , Transcriptoma , Encéfalo/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica
18.
Brain Dev ; 45(4): 237-243, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36567197

RESUMO

BACKGROUND: N-methyl-d-aspartate receptors (NMDARs) are ligand-gated ion channels that mediate excitatory synaptic transmission and brain development in the central nervous system. Mutations in GRIN2D encoding the NMDAR subunit GluN2D are associated with a wide spectrum of neurodevelopmental disorders. METHODS: We report a novel de novo GRIN2D variant (NM_000836.2: c.2024C > T, p.Ala675Val) in an infant with severe developmental and epileptic encephalopathy. Clinical characteristics and treatment outcomes of patients with GRIN2D-related developmental and epileptic encephalopathy were summarized by reviewing the literature. RESULTS: In silico analysis suggested this p.Ala675Val variant residing in the highly conserved M3 helix of GluN2D would interfere with channel gating. Therapeutic options including multiple anticonvulsants, oral corticosteroid therapy, and ketogenic diet failed to achieve seizure control. Eventually, adjunctive therapy with perampanel led to marked electroclinical improvement. CONCLUSIONS: Perampanel can be beneficial adjuvant therapy for patients with GRIN2D-related intractable epilepsy. Mechanistic understanding and case-per-se analysis are required to enable more individualized treatment for the patients.


Assuntos
Epilepsia Generalizada , Lactente , Humanos , Epilepsia Generalizada/genética , Nitrilas , Piridonas/uso terapêutico , Convulsões , Receptores de N-Metil-D-Aspartato/genética
19.
J Cardiovasc Transl Res ; 16(2): 430-442, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36036861

RESUMO

Exercise has been recognized as an important non-pharmacological approach for the prevention, treatment, and rehabilitation of cardiovascular diseases, but the mechanisms of exercise in promoting cardiovascular health remain unclear. Exercise generates cardiac benefits via stimulating muscle to secret hundreds of myokines that directly enter circulation and target heart tissue. Therefore, inter-organ communication between skeletal muscle and heart may be one important regulating pattern, and such communication can occur through secretion of molecules, frequently known as myokines. Irisin, a newly identified myokine, is cleaved from fibronectin type III domain-containing protein 5 (FNDC5) and secreted by the stimulation of exercise. Recently, accumulating evidence focusing on the interaction between irisin and cardiac function has been reported. This review highlights the molecular signaling by which irisin regulates the benefits of exercise on cardiac function both in physiological and pathological process, and discusses the clinical potential of irisin in treating heart diseases. Exercise generates various cardiovascular benefits through stimulating skeletal muscle to secrete irisin. The exercise "hormone" irisin, both produced by exercise or recombinant form, exerts therapeutic effects in a group of cardiovascular disorders including heart failure, myocardial infarction, atherosclerosis and hypertension. However, the molecular mechanisms involved remain ambiguous.This review highlights the most up-to-date findings to bridge the gap between exercise, irisin and cardiovascular diseases, and discusses the potential clinical prospect of irisin.


Assuntos
Fibronectinas , Infarto do Miocárdio , Humanos , Fibronectinas/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético , Fatores de Transcrição/metabolismo , Infarto do Miocárdio/metabolismo
20.
PLoS One ; 18(5): e0285943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256901

RESUMO

BACKGROUND: Postoperative nausea and vomiting are typical postsurgical complications. Drug therapy is only partially effective. The goal of our meta-analysis is to systematically evaluate the efficacy and safety of electrical acupoint stimulation for postoperative nausea and vomiting and to score the quality of evidence supporting this concept. METHODS: PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov were searched from inception to March 19, 2020. RESULTS: Twenty-six studies (2064 patients) were included. Compared with control treatment, electrical acupoint stimulation reduced the incidence of postoperative nausea and vomiting (RR 0.49, 95% CI 0.41 to 0.57, P < 0.001), postoperative nausea (RR 0.55, 95% CI 0.47 to 0.64, P < 0.001) and postoperative vomiting (RR 0.56, 95% CI 0.45 to 0.70, P < 0.001). Electrical acupoint stimulation also reduced the number of patients requiring antiemetic rescue (RR 0.60, 95% CI 0.43 to 0.85, P = 0.004). No differences in adverse events were observed. Subgroup analysis showed that both electroacupuncture (RR 0.58, 95% CI 0.46 to 0.74, P < 0.001) and transcutaneous electrical acupoint stimulation (RR 0.44, 95% CI 0.34 to 0.58, P < 0.001) had significant effects. Electrical acupoint stimulation was effective whether administered preoperatively (RR 0.40, 95% CI 0.27 to 0.60, P < 0.001), postoperatively (RR 0.59, 95% CI 0.46 to 0.76, P < 0.001), or perioperatively (RR 0.50, 95% CI 0.37 to 0.67, P < 0.001). The quality of evidence was moderate to low. CONCLUSIONS: Electrical acupoint stimulation probably reduce the incidence of postoperative nausea and vomiting, postoperative nausea, postoperative vomiting, and reduce the number of patients requiring antiemetic rescue, with few adverse events.


Assuntos
Antieméticos , Estimulação Elétrica Nervosa Transcutânea , Humanos , Náusea e Vômito Pós-Operatórios/prevenção & controle , Náusea e Vômito Pós-Operatórios/tratamento farmacológico , Antieméticos/uso terapêutico , Pontos de Acupuntura , Vômito/terapia , Vômito/tratamento farmacológico , Estimulação Elétrica , Estimulação Elétrica Nervosa Transcutânea/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA