Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35022234

RESUMO

Amino acids are essential for cell growth and metabolism. Amino acid and growth factor signaling pathways coordinately regulate the mechanistic target of rapamycin complex 1 (mTORC1) kinase in cell growth and organ development. While major components of amino acid signaling mechanisms have been identified, their biological functions in organ development are unclear. We aimed to understand the functions of the critically positioned amino acid signaling complex GAP activity towards Rags 2 (GATOR2) in brain development. GATOR2 mediates amino acid signaling to mTORC1 by directly linking the amino acid sensors for arginine and leucine to downstream signaling complexes. Now, we report a role of GATOR2 in oligodendrocyte myelination in postnatal brain development. We show that the disruption of GATOR2 complex by genetic deletion of meiosis regulator for oocyte development (Mios, encoding a component of GATOR2) selectively impairs the formation of myelinating oligodendrocytes, thus brain myelination, without apparent effects on the formation of neurons and astrocytes. The loss of Mios impairs cell cycle progression of oligodendrocyte precursor cells, leading to their reduced proliferation and differentiation. Mios deletion manifests a cell type-dependent effect on mTORC1 in the brain, with oligodendroglial mTORC1 selectively affected. However, the role of Mios/GATOR2 in oligodendrocyte formation and myelination involves mTORC1-independent function. This study suggests that GATOR2 coordinates amino acid and growth factor signaling to regulate oligodendrocyte myelination.


Assuntos
Aminoácidos/metabolismo , Encéfalo/metabolismo , Complexos Multiproteicos/metabolismo , Bainha de Mielina/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Deleção de Genes , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Knockout , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Transgenes
2.
BMC Neurol ; 22(1): 414, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348486

RESUMO

BACKGROUND: Primary Sjögren's syndrome (pSS) is an autoimmune inflammatory disease characterized by dryness of the eyes, mouth and other mucous membranes. Patients with pSS can also present with extraglandular manifestations, such as pulmonary, kidney and nervous system involvement. Central nervous system (CNS) manifestations have rarely been described in pSS. CASE PRESENTATION: A 33-year-old man was admitted with a one-month history of dizziness, speech disturbance, and walking instability. His brain enhanced magnetic resonance imaging (MRI) showed symmetrical, enhanced "salt-and-pepper-like" speckled lesions in the brainstem, basal ganglia, and subcortical regions, and his diagnosis was considered possible chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Further examination revealed that anti-SSA antibody was positive, and the Schirmer test and labial salivary gland histopathology were abnormal, which supported the diagnosis of pSS. CONCLUSION: pSS is a chronic systemic autoimmune disease that involves neurological complications. This case suggests that CNS lesions of pSS can present with clinical and MRI findings similar to those of CLIPPERS.


Assuntos
Doenças do Sistema Nervoso Central , Síndrome de Sjogren , Masculino , Humanos , Adulto , Doenças do Sistema Nervoso Central/patologia , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/diagnóstico por imagem , Ponte/diagnóstico por imagem , Ponte/patologia , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
3.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34769495

RESUMO

The neuropathological hallmarks of Alzheimer's disease (AD) are senile plaques (SPs), which are composed of amyloid ß protein (Aß), and neurofibrillary tangles (NFTs), which consist of highly phosphorylated tau protein. As bio-metal imbalance may be involved in the formation of NFT and SPs, metal regulation may be a direction for AD treatment. Clioquinol (CQ) is a metal-protein attenuating compound with mild chelating effects for Zn2+ and Cu2+, and CQ can not only detach metals from SPs, but also decrease amyloid aggregation in the brain. Previous studies suggested that Cu2+ induces the hyperphosphorylation of tau. However, the effects of CQ on tau were not fully explored. To examine the effects of CQ on tau metabolism, we used a human neuroblastoma cell line, M1C cells, which express wild-type tau protein (4R0N) via tetracycline-off (TetOff) induction. In a morphological study and ATP assay, up to 10 µM CQ had no effect on cell viability; however, 100 µM CQ had cytotoxic effects. CQ decreased accumulation of Cu+ in the M1C cells (39.4% of the control), and both total and phosphorylated tau protein. It also decreased the activity of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) (37.3% and 60.7% levels of the control, respectively), which are tau kinases. Of note, activation of protein phosphatase 2A (PP2A), which is a tau phosphatase, was also observed after CQ treatment. Fractionation experiments demonstrated a reduction of oligomeric tau in the tris insoluble, sarkosyl soluble fraction by CQ treatment. CQ also decreased caspase-cleaved tau, which accelerated the aggregation of tau protein. CQ activated autophagy and proteasome pathways, which are considered important for the degradation of tau protein. Although further studies are needed to elucidate the mechanisms responsible for the effects of CQ on tau, CQ may shed light on possible AD therapeutics.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Clioquinol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Emaranhados Neurofibrilares/efeitos dos fármacos , Multimerização Proteica , Proteínas tau/química , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autofagia , Linhagem Celular Tumoral , Cobre/química , Humanos , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Proteína Fosfatase 2/metabolismo
4.
J Biol Chem ; 292(45): 18542-18555, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28924038

RESUMO

A high proliferation rate has been observed to facilitate somatic cell reprogramming, but the pathways that connect proliferation and reprogramming have not been reported. DNA methyltransferase 1 (DNMT1) methylates hemimethylated CpG sites produced during S phase and maintains stable inheritance of DNA methylation. Impairing this process results in passive DNA demethylation. In this study, we show that the cell proliferation rate positively correlated with the expression of Dnmt1 in G1 phase. In addition, as determined by whole-genome bisulfate sequencing and high-performance liquid chromatography, global DNA methylation of mouse embryonic fibroblasts was significantly higher in G1 phase than in G2/M phase. Thus, we suspected that high cellular proliferation requires more Dnmt1 expression in G1 phase to prevent passive DNA demethylation. The methylation differences of individual CpG sites between G1 and G2/M phase were related to the methylation status and the positions of their surrounding CpG sites. In addition, larger methylation differences were observed on the promoters of pluripotency-related genes; for example, Oct4, Nanog, Sox2, Esrrb, Cdh1, and Epcam When such methylation differences or passive DNA demethylation accumulated with Dnmt1 suppression and proliferation acceleration, DNA methylation on pluripotency-related genes was decreased, and their expression was up-regulated, which subsequently promoted pluripotency and mesenchymal-epithelial transition, a necessary step for reprogramming. We infer that high cellular proliferation rates promote generation of induced pluripotent stem cells at least partially by inducing passive DNA demethylation and up-regulating pluripotency-related genes. Therefore, these results uncover a connection between cell reprogramming and DNA methylation.


Assuntos
Reprogramação Celular , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Desmetilação do DNA , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Regiões Promotoras Genéticas , Animais , Biomarcadores/metabolismo , Linhagem Celular Transformada , Proliferação de Células , Células Cultivadas , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferase 1/genética , Embrião de Mamíferos/citologia , Transição Epitelial-Mesenquimal , Fase G1 , Fase G2 , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo
6.
J Mater Sci Mater Med ; 28(1): 10, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27915402

RESUMO

Beyond promoting hard tissue repairing, bioactive glasses (BGs) have also been proved to be beneficial for wound healing. Nano-scale BGs prepared by sol-gel method were found to have a better performance as they have a larger specific surface area. In this work, bioactive nanoparticles (nBPs) with mean diameter of 12 nm (BP-12) instead of conventional BGs were mixed with gelatin to form an easy-to-use hydrogel as a dressing for skin wound. It was found that the composite of BP-12 and gelatin could form a hydrogel (BP-12/Gel) under 25 °C, which showed pronounced thixotropy at a practically accessible shear rate, therefore become easy to be used for wound cover. In vitro, the composite hydrogel of BP-12 and gelatin had good biocompatibility with the fibroblast cells. In vivo, rapid cutaneous-tissue regeneration and tissue-structure formation within 7 days was observed in the wound-healing experiment performed in rats. This hydrogel is thus a promising easy-to-use wound dressing material.


Assuntos
Bandagens , Fibroblastos/citologia , Gelatina/química , Hidrogéis/química , Nanopartículas/química , Pele/lesões , Células 3T3 , Animais , Materiais Biocompatíveis/química , Biópsia , Linhagem Celular , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Ratos , Regeneração , Reologia , Propriedades de Superfície , Temperatura , Viscosidade , Cicatrização
10.
Nat Protoc ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147983

RESUMO

Nanozymes are nanomaterials with enzyme-like catalytic properties. They are attractive reagents because they do not have the same limitations of natural enzymes (e.g., high cost, low stability and difficult storage). To test, optimize and compare nanozymes, it is important to establish fundamental principles and systematic standards to fully characterize their catalytic performance. Our 2018 protocol describes how to characterize the catalytic activity and kinetics of peroxidase nanozymes, the most widely used type of nanozyme. This approach was based on Michaelis-Menten enzyme kinetics and is now updated to take into account the unique physicochemical properties of nanomaterials that determine the catalytic kinetics of nanozymes. The updated procedure describes how to determine the number of active sites as well as other physicochemical properties such as surface area, shape and size. It also outlines how to calculate the hydroxyl adsorption energy from the crystal structure using the density functional theory method. The calculations now incorporate these measurements and computations to better characterize the catalytic kinetics of peroxidase nanozymes that have different shapes, sizes and compositions. This updated protocol better describes the catalytic performance of nanozymes and benefits the development of nanozyme research since further nanozyme development requires precise control of activity by engineering the electronic, geometric structure and atomic configuration of the catalytic sites of nanozymes. The characterization of the catalytic activity of peroxidase nanozymes and the evaluation of their kinetics can be performed in 4 h. The procedure is suitable for users with expertise in nano- and materials technology.

11.
Animals (Basel) ; 14(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39272382

RESUMO

Recombination-activating genes (RAGs) play a crucial role in the V(D)J recombination process and the development of immune cells. The development of the immune system and its mechanisms in pigs exhibit greater similarity to those of humans compared to other animals, thus rendering pigs a valuable tool for biomedical research. In this study, we utilized CRISPR/Cas9 gene editing and somatic cell nuclear transfer technology to generate RAG2 knockout (KO) pigs. Furthermore, we evaluated the impact of RAG2 KO on the immune organs and immune cell development through morphological observations, blood analysis and flow cytometry technology. RAG2 KO cell lines were used as donors for cloning. The reconstructed embryos were transplanted into 4 surrogate sows, and after 116 days of gestation, 2 sows gave birth to 12 live piglets, all of which were confirmed to be RAG2 KO. The thymus and spleen sizes of RAG2 KO pigs were significantly smaller than those of wild-type (WT) pigs. Hematoxylin-eosin staining results revealed that the thymus and spleen tissue structures of RAG2 KO pigs were disorganized and lacked the characteristic structures, indicating that RAG2 KO leads to dysplasia of the thymus and spleen. Hematological analysis demonstrated that the total number of white blood cells and lymphocytes in the circulation of RAG2 KO pigs was significantly lower, while the number of eosinophils was higher. Flow cytometry results indicated that the proportions of mature T and B lymphocytes were significantly reduced compared to WT pigs. These findings successfully verified the immunodeficiency phenotype of RAG2 KO pigs. This study may provide experimental animals for the development of tumor models and humanized animals.

12.
Microorganisms ; 12(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38930494

RESUMO

The beta T-cell receptor (TRB) expressed by beta T cells is essential for foreign antigen recognition. The TRB locus contains a TRBV family that encodes three complementarity determining regions (CDRs). CDR1 is associated with antigen recognition and interactions with MHC molecules. In contrast to domestic pigs, African suids lack a 284-bp segment spanning exons 1 and 2 of the TRBV27 gene that contains a sequence encoding CDR1. In this study, we used the African swine fever virus (ASFV) as an example to investigate the effect of deleting the TRBV27-encoded CDR1 on the resistance of domestic pigs to exotic pathogens. We first successfully generated TRBV27-edited fibroblasts with disruption of the CDR1 sequence using CRISPR/Cas9 technology and used them as donor cells to generate gene-edited pigs via somatic cell nuclear transfer. The TRBV-edited and wild-type pigs were selected for synchronous ASFV infection. White blood cells were significantly reduced in the genetically modified pigs before ASFV infection. The genetically modified and wild-type pigs were susceptible to ASFV and exhibited typical fevers (>40 °C). However, the TRBV27-edited pigs had a higher viral load than the wild-type pigs. Consistent with this, the gene-edited pigs showed more clinical signs than the wild-type pigs. In addition, both groups of pigs died within 10 days and showed similar severe lesions in organs and tissues. Future studies using lower virulence ASFV isolates are needed to determine the relationship between the TRBV27 gene and ASFV infection in pigs over a relatively long period.

13.
Theranostics ; 14(5): 1956-1965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505606

RESUMO

Rationale: Magnetic resonance imaging (MRI) is a powerful diagnostic technology by providing high-resolution imaging. Although MRI is sufficiently valued in its resolving morphology, it has poor sensitivity for tracking biomarkers. Therefore, contrast agents are often used to improve MRI diagnostic sensitivity. However, the clinically used Gd chelates are limited in improving MRI sensitivity owing to their low relaxivity. The objective of this study is to develop a novel contrast agent to achieve a highly sensitive tracking of biomarkers in vivo. Methods: A Gd-based nanoprobe composed of a gadolinium nanoparticle encapsulated within a human H-ferritin nanocage (Gd-HFn) has been developed. The specificity and sensitivity of Gd-HFn were evaluated in vivo in tumor-bearing mice and apolipoprotein E-deficient mice (Apoe-/-) by MRI. Results: The Gd-HFn probe shows extremely high relaxivity values (r1 = 549 s-1mM-1, r2 = 1555 s-1mM-1 under a 1.5-T magnetic field; and r1 = 428 s-1mM-1 and r2 = 1286 s-1mM-1 under a 3.0-T magnetic field), which is 175-fold higher than that of the clinically standard Dotarem (Gd-DOTA, r1 =3.13 s-1mM-1) under a 1.5-T magnetic field, and 150-fold higher under a 3.0-T magnetic field. Owing to the substantially enhanced relaxivity values, Gd-HFn achieved a highly sensitive tracking for the tumor targeting receptor of TfR1 and enabled the in vivo MRI visualization of tumors approaching the angiogenic switch. Conclusions: The developed Gd-HFn contrast agent makes MRI a more powerful tool by simultaneously providing functional and morphological imaging information, which paves the way for a new perspective in molecular imaging.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Humanos , Meios de Contraste , Gadolínio , Apoferritinas , Neoplasias/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Molecular , Biomarcadores
14.
Cell Rep ; 42(7): 112801, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463107

RESUMO

How neuronal signaling affects brain myelination remains poorly understood. We show dysregulated neuronal RHEB-mTORC1-DLK1 axis impairs brain myelination. Neuronal Rheb cKO impairs oligodendrocyte differentiation/myelination, with activated neuronal expression of the imprinted gene Dlk1. Neuronal Dlk1 cKO ameliorates myelination deficit in neuronal Rheb cKO mice, indicating that activated neuronal Dlk1 expression contributes to impaired myelination caused by Rheb cKO. The effect of Rheb cKO on Dlk1 expression is mediated by mTORC1; neuronal mTor cKO and Raptor cKO and pharmacological inhibition of mTORC1 recapitulate elevated neuronal Dlk1 expression. We demonstrate that both a secreted form of DLK1 and a membrane-bound DLK1 inhibit the differentiation of cultured oligodendrocyte precursor cells into oligodendrocytes expressing myelin proteins. Finally, neuronal expression of Dlk1 in transgenic mice reduces the formation of mature oligodendrocytes and myelination. This study identifies Dlk1 as an inhibitor of oligodendrocyte myelination and a mechanism linking altered neuronal signaling with oligodendrocyte dysfunction.


Assuntos
Bainha de Mielina , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Transdução de Sinais , Animais , Camundongos , Diferenciação Celular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais/fisiologia , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo
15.
Biotechnol Lett ; 34(6): 1029-32, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22395479

RESUMO

A 700 ml membrane-aerated, stirred glass reactor equipped with four vertical baffles was constructed. Biodesulfurization of model oil (n-dodecane containing dibenzothiophene-DBT) and hydrodesulfurized diesel was carried out using Pseudomonas delafieldii strain R-8. Microbubble aeration gave an activity of 1.3 mg DBT removed g(-1) h(-1) and 277 µg sulfur g(-1) h(-1) for model oil and hydrodesulfurized diesel, respectively. These values were 1.9- and 1.6-times higher than using a traditional bubble aeration process. This is a promising method for the biodesulfurization of petroleum feedstocks.


Assuntos
Reatores Biológicos , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/metabolismo , Compostos de Enxofre/metabolismo , Aerobiose , Cerâmica , Gasolina , Tiofenos/metabolismo
16.
Chin J Physiol ; 55(6): 398-404, 2012 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-23286447

RESUMO

The genetic variants in glucocerebrosidase (GBA) gene have been previously examined as potential susceptibility factors for Parkinson's disease (PD). Although of great interest, possible role of GBA gene in PD has not been well investigated in eastern Chinese population. To explore this association, we conducted a genetic screen of three common GBA variants (p.L444P, p.N370S, and p.R120W) in a casecontrol cohort comprised of 638 subjects of Chinese ethnicity. In order to provide a more precise estimate of this association, a meta-analysis was performed. We found that the GBA p.L444P allele was significantly more frequent (P = 0.001) in the PD patients (6/195 = 3.08%) than in the controls (0/443). The p.L444P mutation, but not p.N370S and p.R120W, was found to be associated with PD. Combined analysis including all previously published ancestral Chinese data yielded a highly significant association between the GBA gene and an increased risk for PD (OR = 8.13, 95% CI, 4.43-14.92, P < 0.00001). Our study suggests that the GBA gene may be a susceptibility gene for PD in the Chinese population. Efforts to elucidate in detail this interesting and biologically plausible genetic association are warranted.


Assuntos
Glucosilceramidase/genética , Doença de Parkinson/genética , Povo Asiático/genética , China , Predisposição Genética para Doença , Humanos , Mutação
17.
Vasc Endovascular Surg ; 56(3): 335-339, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35130085

RESUMO

Basilar artery occlusion (BAO) is one of the most devastating types of ischaemic stroke and is identified by using computed tomography (CT) angiography. Marfan syndrome is an autosomal dominant disorder involving multisystem connective tissue, and the neurological complications are relatively rare. In this article, we report a case of a young Marfan syndrome patient complicated with BAO ischaemic stroke. The patient was an 18-year-old man with right hemiparesis, aphasia and impaired consciousness. CT angiography of the brain showed an occlusion distal to the basilar artery. Endovascular therapy including intravenous thrombolysis and mechanical thrombectomy (MT) was administered to this patient inside the therapeutic window. The patient had a favourable clinical outcome after endovascular therapy. Marfan syndrome may be a rare cause of ischaemic stroke with BAO. In addition, our report provides some evidence that can be used as a reference when planning therapeutic strategies for BAO patients with Marfan syndrome.


Assuntos
Isquemia Encefálica , Procedimentos Endovasculares , Síndrome de Marfan , Acidente Vascular Cerebral , Insuficiência Vertebrobasilar , Adolescente , Artéria Basilar , Procedimentos Endovasculares/métodos , Humanos , Masculino , Síndrome de Marfan/complicações , Síndrome de Marfan/diagnóstico , Estudos Retrospectivos , Acidente Vascular Cerebral/terapia , Trombectomia/métodos , Resultado do Tratamento , Adulto Jovem
18.
Biomed Pharmacother ; 151: 113175, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35623172

RESUMO

Micelles have been extensively investigated as drug delivery systems for loading of antitumor drugs with the advantages of good dispersibility, controllable size distribution, and high loading capacity. However, phagocytic clearance by the mononuclear phagocyte system remains a major impediment that inhibits blood circulation and thus tumor accumulation of micelles. Inspired by the antiphagocytic properties of ß2-microglobulin (ß2M), here we developed a ß2M-derived peptide for the surface functionalization of micelles. A ß2M-derived sequence was integrated with a matrix metalloproteinase-2 (MMP-2) cleavable sequence and then modified on the surface of poly(ethylene glycol)-b-poly(caprolactone) (PEG-PCL) micelles, endowing the micelles with both antiphagocytic and MMP-2-responsive properties. Compared to pristine PEG-PCL micelles, micelles modified with the dual-functional peptide exhibited higher inhibition of phagocytosis by macrophages in the absence of MMP-2, and enhanced internalization by tumor-associated macrophages in the presence of MMP-2, leading to enhanced tumor accumulation of the loaded photosensitizer, thus enabling antitumor therapy. These results demonstrated that antiphagocytic peptides derived from endogenous proteins are promising for functionalization of micelles in smart drug delivery.


Assuntos
Antineoplásicos , Micelas , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Metaloproteinase 2 da Matriz , Poliésteres/química , Polietilenoglicóis/química
19.
Front Psychol ; 13: 779217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369265

RESUMO

During the COVID-19 pandemic, online education has become an important approach to learning in the information era and an important research topic in the field of educational technology as well as that of education in general. Teacher-student interaction in online education is an important factor affecting students' learning performance. This study employed a questionnaire survey to explore the influence of teacher-student interaction on learning effects in online education as well as the mediating role of psychological atmosphere and learning engagement. The study involved 398 college students studying at Chinese universities as the research object. Participants filled out a self-report questionnaire. The study found that (1) the level of teacher-student interaction positively affected students' learning effects (r = 0.649, p < 0.01). (2) The psychological atmosphere mediated the positive effect of the level of teacher-student interaction on learning effects with mediating effect value of 0.1248. (3) Learning engagement mediated the positive effect of teacher-student interaction on learning effects with a mediating effect value of 0.1539. (4) The psychological atmosphere and learning engagement play a chain-mediating role in the mechanism of teacher-student interaction affecting students' learning effects; that is, teacher-student interaction promotes students' learning engagement by creating a good psychological atmosphere, which, in turn, influences learning effects. The mediating effect value was 0.0403. The results indicate that teacher-student interaction not only directly affects students' learning effects but also influences students' learning effects through the mediating effect of the psychological atmosphere and learning engagement.

20.
Life (Basel) ; 12(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35629298

RESUMO

As a member of the PIKs family, PIK3C3 participates in autophagy and plays a central role in liver function. Several studies demonstrated that the complete suppression of PIK3C3 in mammals can cause hepatomegaly and hepatosteatosis. However, the function of PIK3C3 overexpression on the liver and other organs is still unknown. In this study, we successfully generated PIK3C3 transgenic pigs through somatic cell nuclear transfer (SCNT) by designing a specific vector for the overexpression of PIK3C3. Plasmid identification was performed through enzyme digestion and transfected into the fetal fibroblasts derived from Diannan miniature pigs. After 2 weeks of culturing, six positive colonies obtained from a total of 14 cell colonies were identified through PCR. One positive cell line was selected as the donor cell line for SCNT for the construction of PIK3C3transgenic pigs. Thirty single blastocysts were collected and identified as PIK3C3 transgenic-positive blastocysts. Two surrogates became pregnant after transferring the reconstructed embryos into four surrogates. Fetal fibroblasts of PIK3C3-positive fetuses identified through PCR were used as donor cells for SCNT to generate PIK3C3 transgenic pigs. To further explore the function of PIK3C3 overexpression, genotyping and phenotyping of the fetuses and piglets obtained were performed by PCR, immunohistochemical, HE, and apoptosis staining. The results showed that inflammatory infiltration and vacuolar formation in hepatocytes and apoptotic cells, and the mRNA expression of NF-κB, TGF-ß1, TLR4, TNF-α, and IL-6 significantly increased in the livers of PIK3C3 transgenic pigs when compared with wild-type (WT) pigs. Immunofluorescence staining showed that LC3B and LAMP-1-positive cells increased in the livers of PIK3C3 transgenic pigs. In the EBSS-induced autophagy of the porcine fibroblast cells (PFCs), the accumulated LC3II protein was cleared faster in PIK3C3 transgenic (PFCs) thanWT (PFCs). In conclusion, PIK3C3 overexpression promoted autophagy in the liver and associated molecular mechanisms related to the activation of ULK1, AMBR1, DRAM1, and MTOR, causing liver damage in pigs. Therefore, the construction of PIK3C3 transgenic pigs may provide a new experimental animal resource for liver diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA