Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 572, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720306

RESUMO

BACKGROUND: Postoperative central diabetes insipidus (CDI) is commonly observed in craniopharyngioma (CP) patients, and the inflammatory response plays an important role in CPs. We aimed to evaluate the predictive value of preoperative peripheral inflammatory markers and their combinations regarding CDI occurrence in CPs. METHODS: The clinical data including preoperative peripheral inflammatory markers of 208 CP patients who underwent surgical treatment were retrospectively collected and analyzed. The preoperative peripheral white blood cells (WBC), neutrophils, lymphocytes, monocytes, platelet (PLT), neutrophil-to-lymphocyte ratio (NLR), derived-NLR (dNLR), monocyte-to-lymphocyte ratio (MLR) and PLT-to-lymphocyte ratio (PLR) were assessed in total 208 CP patients and different age and surgical approach CP patient subgroups. Their predictive values were evaluated by the receiver operator characteristic curve analysis. RESULTS: Preoperative peripheral WBC, neutrophils, NLR, dNLR, MLR, and PLR were positively correlated and lymphocyte was negatively associated with postoperative CDI occurrence in CP patients, especially when WBC ≥ 6.66 × 109/L or lymphocyte ≤ 1.86 × 109/L. Meanwhile, multiple logistic regression analysis showed that WBC > 6.39 × 109/L in the > 18 yrs age patients, WBC > 6.88 × 109/L or lymphocytes ≤ 1.85 × 109/L in the transcranial approach patients were closely associated with the elevated incidence of postoperative CDI. Furthermore, the area under the curve obtained from the receiver operator characteristic curve analysis showed that the best predictors of inflammatory markers were the NLR in total CP patients, the MLR in the ≤ 18 yrs age group and the transsphenoidal group, the NLR in the > 18 yrs age group and the dNLR in the transcranial group. Notably, the combination index NLR + dNLR demonstrated the most valuable predictor in all groups. CONCLUSIONS: Preoperative peripheral inflammatory markers, especially WBC, lymphocytes and NLR + dNLR, are promising predictors of postoperative CDI in CPs.


Assuntos
Craniofaringioma , Diabetes Insípido Neurogênico , Neoplasias Hipofisárias , Complicações Pós-Operatórias , Humanos , Craniofaringioma/cirurgia , Craniofaringioma/sangue , Craniofaringioma/complicações , Feminino , Masculino , Estudos Retrospectivos , Adulto , Neoplasias Hipofisárias/cirurgia , Neoplasias Hipofisárias/sangue , Neoplasias Hipofisárias/complicações , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/diagnóstico , Adolescente , Pessoa de Meia-Idade , Criança , Adulto Jovem , Diabetes Insípido Neurogênico/sangue , Diabetes Insípido Neurogênico/etiologia , Neutrófilos , Biomarcadores/sangue , Linfócitos , Inflamação/sangue , Contagem de Leucócitos , Período Pré-Operatório , Pré-Escolar , Prognóstico , Curva ROC
2.
Sci Total Environ ; 923: 171538, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453066

RESUMO

Chromium (VI) in soil poses a significant threat to the environment and human health. Despite efforts to remediate Cr contaminated soil (Cr-soil), instances of re-yellowing have been observed over time. To understand the causes of re-yellowing as well as the influence of overdosed chemical reductant in remediating Cr-soil, experiments on excess reducing agent interference and soil re-yellowing mechanisms under different extreme conditions were conducted. The results show that the USEPA method 3060A & 7196A combined with K2S2O8 oxidation is an effective approach to eliminate interference from excess FeSO4 reducing agents. The main causes of re-yellowing include the failure of reducing agents, disruption of soil lattice, and interactions between manganese oxides and microorganisms. Under various extreme conditions simulated across the four seasons, high temperature and drought significantly accelerated the failure of reducing agents, resulting in the poorest remediation effectiveness for Cr-soil (91.75 %). Dry-wet cycles promoted the formation of soil aggregates, negatively affecting Cr(VI) removal. While these extreme conditions caused relatively mild re-yellowing (9.46 %-16.79 %) due to minimal soil lattice damage, the potential risk of re-yellowing increases with the failure of reducing agents and the release of Cr(VI) within the lattice. Prolonged exposure to acid rain leaching and freeze-thaw cycles disrupted soil structure, leading to substantial leaching and reduction of insoluble Cr, resulting in optimal remediation effectiveness (94.37 %-97.73 %). As reducing agents gradually and the involvement of the water medium, significant re-yellowing occurred in the remediated soil (51.52 %). Mn(II) in soil enriched relevant microorganisms, and the Mn(IV)-mediated biological oxidation process was also one of the reasons for soil re-yellowing.

3.
Chemosphere ; 355: 141824, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548082

RESUMO

The complexity and high cost to separate and recover short chain fatty acids (SCFAs), ammonium ions, and phosphates in the sludge fermentation liquid hinder the application of sludge anaerobic fermentation. In this study, an interesting phenomenon was found in a sludge anaerobic fermenter with a dynamic membrane (DM) which could not only enhance SCFAs production but also retain most SCFAs in fermenter. The separation factor of DM for NH3-N/SCFAs and PO43-/SCFAs throughout the DM development were about 40 and 80, respectively. Analysis reveals that rejection of SCFAs by DM could not be simply correlated to molecular weight or membrane pore size. The rejection mechanisms might be dominated by Donnan rejection. In addition, biodegradation in the DM may also have contribution. Findings of this study suggest the potential of DM as an economical technology for nutrients and SCFAs recover.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Fermentação , Nutrientes , Ácidos Graxos Voláteis , Concentração de Íons de Hidrogênio
4.
Sci Rep ; 14(1): 10578, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719853

RESUMO

Hearing preservation (HP) during vestibular schwannomas (VSs) surgery poses a significant challenge. Although brainstem auditory evoked potentials (BAEPs) on the affected side are commonly employed to monitor cochlear nerve function, their low signal-to-noise ratio (SNR) renders them susceptible to interferences, compromising their reliability. We retrospectively analyzed the data of patients who underwent tumor resection, while binaural brainstem auditory evoked potentials (BAEPs) were simultaneously recorded during surgery. To standardize BAEPs on the affected side, we incorporated the synchronous healthy side as a reference (interval between affected and healthy side ≤ 3 min). A total of 127 patients were enrolled. Comparison of the raw BAEPs data pre- and post-tumor resection revealed that neither V-wave amplitude (Am-V) nor latency (La-V) could serve as reliable predictors of HP simultaneously. However, following standardization, V-wave latency (STIAS-La-V) and amplitude (STIAS-Am-V) emerged as stable predictors of HP. Furthermore, the intraoperative difference in V-wave amplitude (D-Am-V) predicted postoperative HP in patients with preoperative HP and remained predictive after standardization. The utilization of intraoperative synchronous healthy side BAEPs as a reference to eliminate interferences proves to be an effective approach in enhancing the reliability of BAEPs for predicting HP in VSs patients.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico , Neuroma Acústico , Humanos , Neuroma Acústico/cirurgia , Neuroma Acústico/fisiopatologia , Feminino , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Masculino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Idoso , Audição , Adulto Jovem
5.
Water Res ; 254: 121401, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447378

RESUMO

Although being viewed as a promising technology for reclamation of carbon and phosphorus from excess sludge, anaerobic fermentation (AF) grapples with issues such as a low yield of volatile fatty acids (VFAs) and high phosphorus recovery costs. In this study, we synthesized Fe3O4@MOF-808 (FeM) with abundant defects and employed it to simultaneously enhance VFAs and phosphorus recovery during sludge anaerobic fermentation. Through pre-oxidization of sludge catalyzed by FeM-induced peroxydisulfate, the soluble organic matter increased by 2.54 times, thus providing ample substrate for VFAs production. Subsequent AF revealed a remarkable 732.73 % increase in VFAs and a 1592.95 % increase in phosphate. Factors contributing to the high VFAs yield include the non-biological catalysis of unsaturated Zr active sites in defective FeM, enhancing protein hydrolysis, and the inhibition of methanogenesis due to electron competition arising from the transformation between Fe(III) and Fe(II) under Zr influence. Remarkably, FeM exhibited an adsorption capacity of up to 92.64 % for dissolved phosphate through ligand exchange and electrostatic attractions. Furthermore, FeM demonstrated magnetic separation capability from the fermentation broth, coupled with excellent stability and reusability in both catalysis and adsorption processes.


Assuntos
Fósforo , Esgotos , Fermentação , Esgotos/química , Anaerobiose , Carbono , Compostos Férricos , Ácidos Graxos Voláteis/metabolismo , Fosfatos , Concentração de Íons de Hidrogênio
6.
Materials (Basel) ; 17(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930224

RESUMO

Unforeseen failures in girth welds present a significant challenge for the pipeline industry. This study utilizes 3D Digital Image Correlation (DIC) assisted cross-weld tensile testing to analyze the strain response of high-strength thick-walled pipelines, providing essential insights into the strain migration and fracture mechanisms specific to girth welds. The results reveal that the welding process significantly affects the mechanical distribution within the girth weld. The tested Shielded Metal Arc Welded (SMAW-ed) pipe exhibited undermatched girth welds due to high heat input, while Gas Metal Arc Welding (GMAW) introduced a narrower weld and Heat-Affected Zone (HAZ) with higher hardness than the base metal, indicative of overmatched girth welds. Strain migration, resulting from a combination of metallurgical heterogeneous materials and geometrical reinforcement strengthening, progressed from the softer HAZ to the base metal in the SMAW-ed sample with reinforcement, ultimately leading to fracture in the base metal. In contrast, the GMAW-ed sample shows no strain migration. Reinforcement significantly improves the tensile strength of girth welds and effectively prevents failure in the weld region. Sufficient reinforcement is crucial for minimizing the risk of failure in critical areas such as the weld metal and HAZ, particularly in SMAW-ed pipes.

7.
Foods ; 13(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38790795

RESUMO

The fruit of Choerospondias axillaris (Anacardiaceae), known as south wild jujube in China, has been consumed widely in several regions of the world to produce fruit pastille and leathers, juice, jam, and candy. A comprehensive chemical study on the fresh fruits led to the isolation and identification of 18 compounds, including 7 new (1-7) and 11 known (8-18) comprised of 5 alkenyl (cyclohexenols and cyclohexenones) derivatives (1-5), 3 benzofuran derivatives (6-8), 6 flavonoids (9-14) and 4 lignans (15-18). Their structures were elucidated by extensive spectroscopic analysis. The known lignans 15-18 were isolated from the genus Choerospondias for the first time. Most of the isolates exhibited significant inhibitory activity on α-glucosidase with IC50 values from 2.26 ± 0.06 to 43.9 ± 0.96 µM. Molecular docking experiments strongly supported the potent α-glucosidase inhibitory activity. The results indicated that C. axillaris fruits could be an excellent source of functional foods that acquire potential hypoglycemic bioactive components.

8.
Sci Total Environ ; 916: 170232, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278257

RESUMO

Anaerobic fermentation is an effective method to harvest volatile fatty acids (VFAs) from waste activated sludge (WAS). Accurately predicting and optimizing VFAs production is crucial for anaerobic fermentation engineering. In this study, we developed machine learning models using two innovative strategies to precisely predict the daily yield of VFAs in a laboratory anaerobic fermenter. Strategy-1 focuses on model interpretability to comprehend the influence of variables of interest on VFAs production, while Strategy-2 takes into account the cost of variable acquisition, making it more suitable for practical applications in prediction and optimization. The results showed that Support Vector Regression emerged as the most effective model in this study, with testing R2 values of 0.949 and 0.939 for the two strategies, respectively. We conducted feature importance analysis to identify the critical factors that influence VFAs production. Detailed explanations were provided using partial dependence plots and Shepley Additive Explanations analyses. To optimize VFAs production, we integrated the developed model with optimization algorithms, resulting in a maximum yield of 2997.282 mg/L. This value was 45.2 % higher than the average VFAs level in the operated fermenter. Our study offers valuable insights for predicting and optimizing VFAs production in sludge anaerobic fermentation, and it facilitates engineering practice in VFAs harvesting from WAS.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Fermentação , Anaerobiose , Concentração de Íons de Hidrogênio
9.
Front Cell Dev Biol ; 12: 1369091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601082

RESUMO

Cellular therapy holds immense promise to remuscularize the damaged myocardium but is practically hindered by limited allogeneic sources of cardiac-committed cells that engraft stably in the recipient heart after transplantation. Here, we demonstrate that the pericardial tissue harbors myogenic stem cells (pSCs) that are activated in response to inflammatory signaling after myocardial infarction (MI). The pSCs derived from the MI rats (MI-pSCs) show in vivo and in vitro cardiac commitment characterized by cardiac-specific Tnnt2 expression and formation of rhythmic contraction in culture. Bulk RNA-seq analysis reveals significant upregulation of a panel of genes related to cardiac/myogenic differentiation, paracrine factors, and extracellular matrix in the activated pSCs compared to the control pSCs (Sham-pSCs). Notably, we define MyoD as a key factor that governs the process of cardiac commitment, as siRNA-mediated MyoD gene silencing results in a significant reduction of myogenic potential. Injection of the cardiac-committed cells into the infarcted rat heart leads to long-term survival and stable engraftment in the recipient myocardium. Therefore, these findings point to pericardial myogenic progenitors as an attractive candidate for cardiac cell-based therapy to remuscularize the damaged myocardium.

10.
Neuro Oncol ; 26(5): 872-888, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38158714

RESUMO

BACKGROUND: Glioma stem cells (GSCs) are the root cause of relapse and treatment resistance in glioblastoma (GBM). In GSCs, hypoxia in the microenvironment is known to facilitate the maintenance of stem cells, and evolutionally conserved autophagy regulates cell homeostasis to control cell population. The precise involvement of autophagy regulation in hypoxic conditions in maintaining the stemness of GSCs remains unclear. METHODS: The association of autophagy regulation and hypoxia was first assessed by in silico analysis and validation in vitro. Glioma databases and clinical specimens were used to determine galectin-8 (Gal-8) expression in GSCs and human GBMs, and the regulation and function of Gal-8 in stemness maintenance were evaluated by genetic manipulation in vitro and in vivo. How autophagy was stimulated by Gal-8 under hypoxia was systematically investigated. RESULTS: Hypoxia enhances autophagy in GSCs to facilitate self-renewal, and Gal-8 in the galectin family is specifically involved and expressed in GSCs within the hypoxic niche. Gal-8 is highly expressed in GBM and predicts poor survival in patients. Suppression of Gal-8 prevents tumor growth and prolongs survival in mouse models of GBM. Gal-8 binds to the Ragulator-Rag complex at the lysosome membrane and inactivates mTORC1, leading to the nuclear translocation of downstream TFEB and initiation of autophagic lysosomal biogenesis. Consequently, the survival and proliferative activity of GSCs are maintained. CONCLUSIONS: Our findings reveal a novel Gal-8-mTOR-TFEB axis induced by hypoxia in the maintenance of GSC stemness via autophagy reinforcement, highlighting Gal-8 as a candidate for GSCs-targeted GBM therapy.


Assuntos
Autofagia , Neoplasias Encefálicas , Galectinas , Glioma , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Galectinas/metabolismo , Animais , Camundongos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioma/metabolismo , Glioma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Células Tumorais Cultivadas , Proliferação de Células , Camundongos Nus , Microambiente Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Prognóstico , Hipóxia/metabolismo
11.
Phytochemistry ; 223: 114122, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710376

RESUMO

Quantitative analysis of Rumex nepalensis var. remotiflorus revealed that its roots contain rich anthraquinones, which has emodin, chrysophanol, and physcion contents of up to 0.30, 0.67, and 0.98 mg/g, respectively. Further phytochemical study led to the isolation and purification of seven undescribed phenolic constituents, including one flavan derivative with a 13-membered ring, polygorumin A (1), two dianthrone glucosides, polygonumnolides F and G (2, 3), two diphenylmethanones, rumepalens A and B (4, 5), and a pair of epimeric oxanthrone C-glucosides, rumejaposides K and L (6a, 6b) from the roots of R. nepalensis var. remotiflorus. Furthermore, 1 undescribed natural product, 1-ß-D-glucoside-6'-[(2E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoate]-3-hydroxy-5-methylphenyl (19), and 21 known phenolic compounds were obtained from the aforementioned plant for the first time. Their structures were elucidated through extensive spectroscopic data analysis. Notably, compounds 1, 4-5, and 7-9 exhibited inhibitory activity on α-glucosidase with IC50 values ranging from 1.61 ± 0.17 to 32.41 ± 0.87 µM. In addition, the isolated dianthrone, chrysophanol bianthrone (14), showed obvious cytotoxicity against four human cancer cell lines (HL-60, SMMC-7721, A-549, and MDA-MB-231) with IC50 values ranging from 3.81 ± 0.17 to 35.15 ± 2.24 µM. In silico target prediction and molecular docking studies demonstrated that the mechanism of the anticancer activity of 14 may be related to the interaction with protein kinase CK2.


Assuntos
Antineoplásicos Fitogênicos , Inibidores de Glicosídeo Hidrolases , Fenóis , Rumex , alfa-Glucosidases , Humanos , Fenóis/farmacologia , Fenóis/química , Fenóis/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Rumex/química , alfa-Glucosidases/metabolismo , alfa-Glucosidases/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Raízes de Plantas/química , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos
12.
Food Chem ; 451: 139441, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678656

RESUMO

The utilization of agroindustrial wastes to enrich food protein resources and the exploration of their broader applications are crucial for addressing the food crisis and achieving sustainable development goals. In this study, reeling wastewater-derived sericin was hydrolyzed using papain and trypsin to prepare sericin peptide (SRP) and was used as an antihardening ingredient of high-protein nutrition bars (HPNBs). The mechanism of the antihardening effect of SRP was elucidated by investigating the content of advanced glycation end products and protein oxidation products (carbonyl and free sulfhydryl), and the molecular weight change of HPNBs during storage before and after the addition of SRP. Our results confirmed the fortification of HPNBs with SRP, which is beneficial for the promotion and expansion of sericin applications in the food industry, with positive implications for the rational utilization of protein resources and the enrichment of food protein sources.


Assuntos
Peptídeos , Sericinas , Águas Residuárias , Sericinas/química , Águas Residuárias/química , Peptídeos/química , Armazenamento de Alimentos , Proteínas Alimentares/metabolismo , Proteínas Alimentares/química
13.
Chemosphere ; 362: 142687, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936488

RESUMO

Effective dewatering is vital for both sludge treatment and resource recovery. This study focuses on converting post-anaerobic digested sludge into biochar to enhance sludge dewatering. The sludge-derived biochar is further modified with polyacrylamide (PAM-ADBC) and applied with sulfuric acid-modified montmorillonite (HMTS) for better performance. Significant advancements in dewatering were noted, even at reduced HMTS (0.1 g/g DS) and PAM-ADBC (25 g/kg DS) dosages. These improvements resulted in a remarkable 41.96% enhancement in capillary suction time (17.2 s) and a notable 20.26% reduction in moisture content (66.33%), respectively, all while maintaining a stable pH level. HMTS, with leached cations, improved dewatering by decomposing the extracellular polymeric substance structure through electro-neutralization to release the internal bound water within sludge flocs. Simultaneously, PAM-ADBC coagulated decomposed sludge particles into larger flocs to form a skeletal structure with itself to discharge internal water in compression dewatering. This study introduces a resource recovery method for anaerobically digested sludge and highlights its potential for sustainable utilization.


Assuntos
Resinas Acrílicas , Bentonita , Carvão Vegetal , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Carvão Vegetal/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Bentonita/química , Resinas Acrílicas/química , Ácidos Sulfúricos/química
14.
ACS Biomater Sci Eng ; 10(8): 4855-4864, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39038266

RESUMO

Butterflies constitute approximately 10% of lepidopteran insects, and along with silkworms, they can produce silk; however, this feature is often ignored. In the present study, we observed two primary methods used by butterflies to hang pupae on trees using silk: pupa adheraena (Danaus chrysippus) and pupa contigua (Papilio polytes). Anchoring the abdominal ends of pupae with a silk pad was the most common method used in both cases, whereas wrapping silk around the body using a silk girdle was a method unique to pupa contigua. The connection between the cremaster and silk pad was observed to be similar to that between the hook and loop of a Velcro fastener, except that the cremaster hook is anchor-shaped rather than being a single hook. Such a connection will remain secure, ensuring the safety of the pupae during exposure to wind and rain. Through determining the mechanical properties of silk, the performance of butterfly silk was found to be weaker than that of silkworm silk. Therefore, the P. polytes silk girdle adopts the strategy of merging a dozen silk threads to improve its strength and toughness, thereby making it difficult to break. In addition, we explained how the protein sequence and structure of butterfly silk impact its performance. In conclusion, we discovered that butterfly pupae develop unique body features to establish secure bonds with silk. This enables them to effectively undergo metamorphosis and endure harsh weather conditions and surroundings.


Assuntos
Borboletas , Pupa , Seda , Animais , Borboletas/fisiologia , Seda/química , Árvores , Bombyx
15.
Neuro Oncol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093693

RESUMO

BACKGROUND: Self-renewal of glioma stem cells (GSCs) is responsible for glioblastoma (GBM) therapy-resistant and recurrence. Tumor necrosis factor α (TNFα) and TNF signaling pathway display an antitumor activity in preclinical models and in tumor patients. However, TNFα exhibits no significance for glioma clinical prognosis based on Glioma Genome Atlas database. This study aimed to explore whether TNFα of tumor microenvironment maintains self-renewal of GSCs and promotes worse prognosis in glioma patient. METHODS: Spatial transcriptomics, immunoblotting, sphere formation assay, extreme limiting dilution, and gene expression analysis were used to determine the role of TNFα on GSC's self-renewal. Mass spectrometry, RNA-sequencing detection, bioinformatic analyses, qRT-RNA, immunofluorescence, immunohistochemistry, single cell RNA sequencing, in vitro and in vivo models were used to uncover the mechanism of TNFα-induced GSC self-renewal. RESULTS: Low level of TNFα displays a promoting effect on GSC self-renewal and worse glioma prognosis. Mechanistically, Vasorin (VASN) mediated TNFα-induced self-renewal by potentiating glycolysis. Lactate produced by glycolysis inhibits the TNFα secretion of tumor-associated macrophages (TAMs) and maintains TNFα in a low level. CONCLUSIONS: TNFα-induced GSC self-renewal mediated by VASN provides a possible explanation for the failures of endogenous TNFα effect on GBM. Combination of targeting VASN and TNFα anti-tumor effect may be an effective approach for treating GBM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA