Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 47(25): 8346-8355, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29896594

RESUMO

In this work, we present a facile preparation of a paper-based glucose assay for rapid, sensitive, and quantitative measurement of glucose in blood plasma and urine. Two copper phosphorescent complexes [Cu(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)(2,6-dimethylphenylisocyanide)2][B(C6H3(CF3)2)4] (Cu1) and [Cu(2,9-dimethyl-1,10-phenanthroline)(2,6-dimethylphenylisocyanide)2][B(C6H3(CF3)2)4] (Cu2) and a new silver congener [Ag(P3)CNAg(P3)][B(C6H3(CF3)2)4] (Ag3) (P3 = PPh2C6H4-PPh-C6H4PPh2 [bis(o-diphenylphosphinophenyl)phenylphosphine]) have been synthesized and their oxygen sensing abilities were investigated. The dimetallic phosphine-based Ag3 complex, having a high oxygen sensing ability, was employed as an efficient signal transducer in enzymatic reactions to recognize blood plasma glucose and urine glucose, which provided a wide linear response for a concentration range between 1.0 and 35 mM and a rapid response, with a limit of detection (LOD) of 0.09 mM for glucose. In practical application, this Ag3 paper-based device offers great analytical reliability and accuracy upon monitoring glucose concentrations in blood plasma.


Assuntos
Técnicas Biossensoriais , Glicemia/análise , Complexos de Coordenação/química , Glicosúria/urina , Prata/química , Cromatografia em Papel , Complexos de Coordenação/síntese química , Cobre/química , Humanos , Limite de Detecção , Luminescência , Oxigênio/química , Fenantrolinas/química , Fosfinas/química
2.
Dalton Trans ; 46(21): 6985-6993, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28513731

RESUMO

In this work, we present a Ag@Au nanoprism-metal-organic framework-paper based glucose sensor for rapid, sensitive, single-use and quantitative glucose determination in human serum. To achieve painless measurement of glucose with a non-invasive detection methodology, this biosensor was further tested in human urine. In this approach, a new hybrid-Ag@Au nanoprism loaded in close proximity to micrometer sized coordination polymers as phosphorescent luminophores significantly enhanced the emission intensity due to metal-enhanced phosphorescence and worked as reaction sites to support more dissolved oxygen. Reports of enhanced phosphorescence intensity are relatively rare, especially at room temperature. The true enhancement factor of Ag@Au-phosphorescent metal-organic frameworks on paper was deduced to be 110-fold, making it a better optical type glucose meter. The results demonstrate the validity of the intensity enhancement effect of the excitation of the overlap of the emission band of a luminophore with the surface plasmon resonance band of Ag@Au nanoprisms. Ag@Au nanoprisms were used not only to improve the detection limit of glucose sensing but also to extend the glucose sensing range by enhancing the oxygen oxidation efficiency. The oxidation of glucose as glucose oxidase is accompanied by oxygen consumption, which increases the intensity of the phosphorescence emission. The turn-on type paper-based biosensor exhibits a rapid response (0.5 s), a low detection limit (0.038 mM), and a wide linear range (30 mM to 0.05 mM), as well as good anti-interference, long-term longevity and reproducibility. Finally, the biosensor was successfully applied to the determination of glucose in human serum and urine.


Assuntos
Glucose/análise , Ouro/química , Nanopartículas Metálicas/química , Estruturas Metalorgânicas/química , Prata/química , Técnicas Biossensoriais , Glicemia/análise , Cloreto de Cálcio/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Humanos , Limite de Detecção , Oxirredução , Papel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA