Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 59(5): 854-863, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29559522

RESUMO

Apolipoprotein A-I binding protein (AIBP) has been shown to augment cholesterol efflux from endothelial cells and macrophages. In zebrafish and mice, AIBP-mediated regulation of cholesterol levels in the plasma membrane of endothelial cells controls angiogenesis. The goal of this work was to evaluate metabolic changes and atherosclerosis in AIBP loss-of-function and gain-of-function animal studies. Here, we show that Apoa1bp-/-Ldlr-/- mice fed a high-cholesterol, high-fat diet had exacerbated weight gain, liver steatosis, glucose intolerance, hypercholesterolemia, hypertriglyceridemia, and larger atherosclerotic lesions compared with Ldlr-/- mice. Feeding Apoa1bp-/-Ldlr-/- mice a high-cholesterol, normal-fat diet did not result in significant differences in lipid levels or size of atherosclerotic lesions from Ldlr-/- mice. Conversely, adeno-associated virus-mediated overexpression of AIBP reduced hyperlipidemia and atherosclerosis in high-cholesterol, high-fat diet-fed Ldlr-/- mice. Injections of recombinant AIBP reduced aortic inflammation in Ldlr-/- mice fed a short high-cholesterol, high-fat diet. Conditional overexpression of AIBP in zebrafish also reduced diet-induced vascular lipid accumulation. In experiments with isolated macrophages, AIBP facilitated cholesterol efflux to HDL, reduced lipid rafts content, and inhibited inflammatory responses to lipopolysaccharide.jlr Our data demonstrate that AIBP confers protection against diet-induced metabolic abnormalities and atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Proteínas de Transporte/metabolismo , Síndrome Metabólica/metabolismo , Fosfoproteínas/metabolismo , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/deficiência , Racemases e Epimerases , Receptores de LDL/deficiência , Receptores de LDL/metabolismo
2.
J Bacteriol ; 196(19): 3421-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25022855

RESUMO

The pathogenesis of diseases elicited by the gastric pathogen Helicobacter pylori is partially determined by the effectiveness of adaptation to the variably acidic environment of the host stomach. Adaptation includes appropriate adherence to the gastric epithelium via outer membrane protein adhesins such as SabA. The expression of sabA is subject to regulation via phase variation in the promoter and coding regions as well as repression by the two-component system ArsRS. In this study, we investigated the role of a homopolymeric thymine [poly(T)] tract -50 to -33 relative to the sabA transcriptional start site in H. pylori strain J99. We quantified sabA expression in H. pylori J99 by quantitative reverse transcription-PCR (RT-PCR), demonstrating significant changes in sabA expression associated with experimental manipulations of poly(T) tract length. Mimicking the length increase of this tract by adding adenines instead of thymines had similar effects, while the addition of other nucleotides failed to affect sabA expression in the same manner. We hypothesize that modification of the poly(T) tract changes DNA topology, affecting regulatory protein interaction(s) or RNA polymerase binding efficiency. Additionally, we characterized the interaction between the sabA promoter region and ArsR, a response regulator affecting sabA expression. Using recombinant ArsR in electrophoretic mobility shift assays (EMSA), we localized binding to a sequence with partial dyad symmetry -20 and +38 relative to the sabA +1 site. The control of sabA expression by both ArsRS and phase variation at two distinct repeat regions suggests the control of sabA expression is both complex and vital to H. pylori infection.


Assuntos
Adesinas Bacterianas/genética , Helicobacter pylori/genética , Regiões Promotoras Genéticas , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica , Adesinas Bacterianas/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/metabolismo , Dados de Sequência Molecular
3.
J Burn Care Res ; 41(2): 229-240, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31943027

RESUMO

Vital, genetically engineered porcine skin transplants have long been regarded as a promising treatment option for severe burn wounds. The objective of this two-part, preclinical study was to evaluate the ability of vital, split-thickness skin xenotransplants derived from designated pathogen-free, alpha 1,3 galactosyltransferase knockout miniature swine to provide temporary wound closure of full-thickness wound defects intended to model severe and extensive, deep partial- and full-thickness burn wounds. In part 1 of the study, four full-thickness wound defects were introduced in four cynomolgus macaques recipients and, then engrafted with two xenografts and two allografts to achieve temporary wound closure. On POD-15, autografts were used to achieve definitive wound closure and were observed until POD-22. In part 2 of the study, four additional subjects each received two full-thickness wound defects, followed by two xenografts to achieve temporary wound closure, and were observed postoperatively for 30 days without further intervention. All grafts were assessed for signs of adherence to the wound bed, vascularity, and signs of immune rejection via gross clinical and histological methods. Xenograft and allograft comparators were equivalent in part 1, and later autografts were otherwise indistinguishable. In part 2, all xenotransplants demonstrated adherence, vascularity, and survival until POD-30. These were unexpected results that exceed previously published findings in similar models. Furthermore, the ensuing GLP-study report directly supported regulatory clearance, permitting a phase I clinical trial. This solution holds great promise as an alternative to human cadaver allograft, the current standard of care for the treatment of severe burns.


Assuntos
Queimaduras/cirurgia , Transplante de Pele/métodos , Porco Miniatura/genética , Técnicas de Fechamento de Ferimentos , Aloenxertos , Animais , Modelos Animais de Doenças , Feminino , Galactosiltransferases , Engenharia Genética , Rejeição de Enxerto , Xenoenxertos , Macaca fascicularis , Masculino , Suínos
4.
J Burn Care Res ; 41(2): 306-316, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32074295

RESUMO

Vital, genetically engineered, porcine xenografts represent a promising alternative to human cadaveric allografts (HCA) in the treatment of severe burns. However, their clinical value would be significantly enhanced if preservation and long-term storage-without the loss of cellular viability-were feasible. The objective of this study was to examine the direct impact of cryopreservation and the length of storage on critical in vivo and in vitro parameters, necessary for a successful, potentially equivalent substitute to HCA. In this study, vital, porcine skin grafts, continuously cryopreserved for more than 7 years were compared side-by-side to otherwise identically prepared skin grafts stored for only 15 minutes. Two major histocompatibility complex (MHC)-controlled donor-recipient pairs received surgically created deep-partial wounds and subsequent grafting with split-thickness porcine skin grafts, differentiated only by the duration of storage. Clinical and histological outcomes, as well as quantification of cellular viability via a series of 3-4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT) assays, were assessed. No statistically significant differences were observed between skin grafts cryopreserved for 15 minutes vs 7 years. Parametric distinctions between xenografts stored for short- vs long-term durations could not be ascertained across independent clinical, histological, or in vitro evaluative methods. The results of this study validate the ability to reliably preserve, store, and retain the essential metabolic activity of porcine tissues after cryopreservation. Plentiful, safe, and readily accessible inventories of vital xenografts represent an advantageous solution to numerous limitations associated with HCA, in the treatment of severe burns.


Assuntos
Queimaduras/cirurgia , Criopreservação/métodos , Transplante de Pele/métodos , Animais , Modelos Animais de Doenças , Suínos
5.
Methodist Debakey Cardiovasc J ; 11(3): 160-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26634023

RESUMO

Cardiovascular disease, which is often driven by hypercholesterolemia and subsequent coronary atherosclerosis, is the number-one cause of morbidity and mortality in the United States. Based on long-term epidemiological studies, high-density lipoprotein cholesterol (HDL-C) levels are inversely correlated with risk for coronary artery disease (CAD). HDL-mediated reverse cholesterol transport (RCT) is responsible for cholesterol removal from the peripheral tissues and return to the liver for final elimination.1 In atherosclerosis, intraplaque angiogenesis promotes plaque growth and increases plaque vulnerability. Conceivably, the acceleration of RCT and disruption of intraplaque angiogenesis would inhibit atherosclerosis and reduce CAD. We have identified a protein called apoA-I binding protein (AIBP) that augments HDL functionality by accelerating cholesterol efflux. Furthermore, AIBP inhibits vascular endothelial growth factor receptor 2 activation in endothelial cells and limits angiogenesis.2 The following discusses the prospect of using AIBP as a novel therapeutic approach for the treatment of CAD.


Assuntos
Artérias/metabolismo , Aterosclerose/metabolismo , Proteínas de Transporte/metabolismo , HDL-Colesterol/metabolismo , Neovascularização Patológica , Animais , Artérias/efeitos dos fármacos , Artérias/patologia , Artérias/fisiopatologia , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Proteínas de Transporte/uso terapêutico , Humanos , Modelos Animais , Racemases e Epimerases , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA