Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Biol Chem ; 299(5): 104696, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37044218

RESUMO

KDEL receptor (KDELR) is a key protein that recycles escaped endoplasmic reticulum (ER) resident proteins from the Golgi apparatus back to the ER and maintains a dynamic balance between these two organelles in the early secretory pathway. Studies have shown that this retrograde transport pathway is partly regulated by two KDELR-interacting proteins, acyl-CoA-binding domain-containing 3 (ACBD3), and cyclic AMP-dependent protein kinase A (PKA). However, whether Golgi-localized ACBD3, which was first discovered as a PKA-anchoring protein in mitochondria, directly interacts with PKA at the Golgi and coordinates its signaling in Golgi-to-ER traffic has remained unclear. In this study, we showed that the GOLD domain of ACBD3 directly interacts with the regulatory subunit II (RII) of PKA and effectively recruits PKA holoenzyme to the Golgi. Forward trafficking of proteins from the ER triggers activation of PKA by releasing the catalytic subunit from RII. Furthermore, we determined that depletion of ACBD3 reduces the Golgi fraction of RII, resulting in moderate, but constitutive activation of PKA and KDELR retrograde transport, independent of cargo influx from the ER. Taken together, these data demonstrate that ACBD3 coordinates the protein secretory pathway at the Golgi by facilitating KDELR/PKA-containing protein complex formation.


Assuntos
Proteínas de Ancoragem à Quinase A , Complexo de Golgi , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico , Transdução de Sinais , Humanos
2.
Cell Commun Signal ; 22(1): 140, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378560

RESUMO

Hostile microenvironment of cancer cells provoke a stressful condition for endoplasmic reticulum (ER) and stimulate the expression and secretion of ER chaperones, leading to tumorigenic effects. However, the molecular mechanism underlying these effects is largely unknown. In this study, we reveal that the last four residues of ER chaperones, which are recognized by KDEL receptor (KDELR), is required for cell proliferation and migration induced by secreted chaperones. By combining proximity-based mass spectrometry analysis, split venus imaging and membrane yeast two hybrid assay, we present that EGF receptor (EGFR) may be a co-receptor for KDELR on the surface. Prior to ligand addition, KDELR spontaneously oligomerizes and constantly undergoes recycling near the plasma membrane. Upon KDEL ligand binding, the interactions of KDELR with itself and with EGFR increase rapidly, leading to augmented internalization of KDELR and tyrosine phosphorylation in the C-terminus of EGFR. STAT3, which binds the phosphorylated tyrosine motif on EGFR, is subsequently activated by EGFR and mediates cell growth and migration. Taken together, our results suggest that KDELR serves as a bona fide cell surface receptor for secreted ER chaperones and transactivates EGFR-STAT3 signaling pathway.


Assuntos
Receptores ErbB , Receptores de Peptídeos , Transdução de Sinais , Humanos , Ligantes , Receptores ErbB/metabolismo , Chaperonas Moleculares/metabolismo , Proliferação de Células , Tirosina , Fator de Transcrição STAT3/metabolismo
3.
Cell Mol Life Sci ; 78(3): 1085-1100, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32562023

RESUMO

KDEL receptor cycles between the ER and the Golgi to retrieve ER-resident chaperones that get leaked to the secretory pathway during protein export from the ER. Recent studies have shown that a fraction of KDEL receptor may reside in the plasma membrane and function as a putative cell surface receptor. However, the trafficking itinerary and mechanism of cell surface expressed KDEL receptor remains largely unknown. In this study, we used N-terminally Halo-tagged KDEL receptor to investigate its endocytosis from the plasma membrane and trafficking itinerary of the endocytosed receptor through the endolysosomal compartments. Our results indicate that surface-expressed KDEL receptor undergoes highly complex recycling pathways via the Golgi and peri-nuclear recycling endosomes that are positive for Rab11 and Rab14, respectively. Unexpectedly, KDEL receptor appears to preferentially utilize clathrin-mediated endocytic pathway as well as clathrin-dependent transport carriers for export from the trans-Golgi network. Taken together, we suggest that KDEL receptor may be a bona fide cell surface receptor with a complex, yet well-defined trafficking itinerary through the endolysosomal compartments.


Assuntos
Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Complexo de Golgi/metabolismo , Receptores de Peptídeos/metabolismo , Linhagem Celular Tumoral , Endossomos/metabolismo , Edição de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Peptídeos/antagonistas & inibidores , Receptores de Peptídeos/genética , Proteínas rab de Ligação ao GTP/metabolismo
4.
BMC Biol ; 19(1): 194, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493279

RESUMO

BACKGROUND: KDEL receptor helps establish cellular equilibrium in the early secretory pathway by recycling leaked ER-chaperones to the ER during secretion of newly synthesized proteins. Studies have also shown that KDEL receptor may function as a signaling protein that orchestrates membrane flux through the secretory pathway. We have recently shown that KDEL receptor is also a cell surface receptor, which undergoes highly complex itinerary between trans-Golgi network and the plasma membranes via clathrin-mediated transport carriers. Ironically, however, it is still largely unknown how KDEL receptor is distributed to the Golgi at steady state, since its initial discovery in late 1980s. RESULTS: We used a proximity-based in vivo tagging strategy to further dissect mechanisms of KDEL receptor trafficking. Our new results reveal that ACBD3 may be a key protein that regulates KDEL receptor trafficking via modulation of Arf1-dependent tubule formation. We demonstrate that ACBD3 directly interact with KDEL receptor and form a functionally distinct protein complex in ArfGAPs-independent manner. Depletion of ACBD3 results in re-localization of KDEL receptor to the ER by inducing accelerated retrograde trafficking of KDEL receptor. Importantly, this is caused by specifically altering KDEL receptor interaction with Protein Kinase A and Arf1/ArfGAP1, eventually leading to increased Arf1-GTP-dependent tubular carrier formation at the Golgi. CONCLUSIONS: These results suggest that ACBD3 may function as a negative regulator of PKA activity on KDEL receptor, thereby restricting its retrograde trafficking in the absence of KDEL ligand binding. Since ACBD3 was originally identified as PAP7, a PBR/PKA-interacting protein at the Golgi/mitochondria, we propose that Golgi-localization of KDEL receptor is likely to be controlled by its interaction with ACBD3/PKA complex at steady state, providing a novel insight for establishment of cellular homeostasis in the early secretory pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Complexo de Golgi , Receptores de Peptídeos , Membrana Celular , Proteínas Quinases Dependentes de AMP Cíclico
5.
Commun Biol ; 7(1): 532, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710927

RESUMO

Golgin tethers are known to mediate vesicular transport in the secretory pathway, whereas it is relatively unknown whether they may mediate cellular stress response within the cell. Here, we describe a cellular stress response during heat shock stress via SUMOylation of a Golgin tether, Golgin45. We found that Golgin45 is a SUMOylated Golgin via SUMO1 under steady state condition. Upon heat shock stress, the Golgin enters the nucleus by interacting with Importin-ß2 and gets further modified by SUMO3. Importantly, SUMOylated Golgin45 appears to interact with PML and SUMO-deficient Golgin45 mutant functions as a dominant negative for PML-NB formation during heat shock stress, suppressing transcription of lipid metabolism genes. These results indicate that Golgin45 may play a role in heat stress response by transcriptional regulation of lipid metabolism genes in SUMOylation-dependent fashion.


Assuntos
Resposta ao Choque Térmico , Metabolismo dos Lipídeos , Sumoilação , Ubiquitinas , Humanos , Metabolismo dos Lipídeos/genética , Resposta ao Choque Térmico/genética , Regulação da Expressão Gênica , Proteína da Leucemia Promielocítica/metabolismo , Proteína da Leucemia Promielocítica/genética , Células HeLa , Proteína SUMO-1/metabolismo , Proteína SUMO-1/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Células HEK293 , Transcrição Gênica , beta Carioferinas/metabolismo , beta Carioferinas/genética
6.
Cells ; 12(7)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37048152

RESUMO

KDEL receptor-1 maintains homeostasis in the early secretory pathway by capturing and retrieving ER chaperones to the ER during heavy secretory activity. Unexpectedly, a fraction of the receptor is also known to reside in the plasma membrane (PM), although it is largely unknown exactly how the KDEL receptor gets exported from the Golgi and travels to the PM. We have previously shown that a Golgi scaffolding protein (ACBD3) facilitates KDEL receptor localization at the Golgi via the regulating cargo wave-induced cAMP/PKA-dependent signaling pathway. Upon endocytosis, surface-expressed KDEL receptor undergoes highly complex itineraries through the Golgi and the endo-lysosomal compartments, where the endocytosed receptor utilizes Rab14A- and Rab11A-positive recycling endosomes and clathrin-decorated tubulovesicular carriers. In this study, we sought to investigate the mechanism through which the KDEL receptor gets exported from the Golgi en route to the PM. We report here that ACBD3 depletion results in greatly increased trafficking of KDEL receptor to the PM via Rab4A-positive tubular carriers emanating from the Golgi. Expression of constitutively activated Rab4A mutant (Q72L) increases the surface expression of KDEL receptor up to 2~3-fold, whereas Rab4A knockdown or the expression of GDP-locked Rab4A mutant (S27N) inhibits KDEL receptor targeting of the PM. Importantly, KDELR trafficking from the Golgi to the PM is independent of PKA- and Src kinase-mediated mechanisms. Taken together, these results reveal that ACBD3 and Rab4A play a key role in regulating KDEL receptor trafficking to the cell surface.


Assuntos
Transdução de Sinais , Transporte Proteico/fisiologia , Membrana Celular/metabolismo , Guanosina Trifosfato/metabolismo
7.
J Cell Biol ; 178(2): 231-44, 2007 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-17620405

RESUMO

As a latent transcription factor, nuclear factor kappaB (NF-kappaB) translocates from the cytoplasm into the nucleus upon stimulation and mediates the expression of genes that are important in immunity, inflammation, and development. However, little is known about how it is regulated inside the nucleus. By a two-hybrid approach, we identify a prefoldin-like protein, ubiquitously expressed transcript (UXT), that is expressed predominantly and interacts specifically with NF-kappaB inside the nucleus. RNA interference knockdown of UXT leads to impaired NF-kappaB activity and dramatically attenuates the expression of NF-kappaB-dependent genes. This interference also sensitizes cells to apoptosis by tumor necrosis factor-alpha. Furthermore, UXT forms a dynamic complex with NF-kappaB and is recruited to the NF-kappaB enhanceosome upon stimulation. Interestingly, the UXT protein level correlates with constitutive NF-kappaB activity in human prostate cancer cell lines. The presence of NF-kappaB within the nucleus of stimulated or constitutively active cells is considerably diminished with decreased endogenous UXT levels. Our results reveal that UXT is an integral component of the NF-kappaB enhanceosome and is essential for its nuclear function, which uncovers a new mechanism of NF-kappaB regulation.


Assuntos
Elementos Facilitadores Genéticos/genética , NF-kappa B/metabolismo , Transcrição Gênica , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Luciferases/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Chaperonas Moleculares , NF-kappa B/genética , Proteínas de Neoplasias , Neoplasias da Próstata/patologia , Interferência de RNA , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Técnicas do Sistema de Duplo-Híbrido
8.
J Immunol ; 184(10): 5777-90, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20385878

RESUMO

Ubiquitin-like protein ISG15, which is robustly induced by IFN or virus, is implicated to inhibit influenza A virus (IAV) in vivo. But the underlying mechanism still remains largely unknown. In this study, we report that Herc5 could catalyze conjugation of ISG15 onto IAV-NS1 protein, the critical virulence factor of IAV. This modification produces two more species, respectively mapped to IAV-NS1 at lysine 20, 41, 217, 219, and 108, 110, and 126. The ISGylated IAV-NS1 fails to form homodimers and inhibits relevant antiviral processes. Knockdown of Herc5 or ISG15 could partially alleviate IFN-beta-induced antiviral activities against IAV, whereas ectopic expression of the Herc5-mediated ISGylation system could distinctly potentiate IFN-beta-induced antiviral effects against IAV. Notably, IAV-NS1s of H5N1 avian IAVs display less ISGylation species than that of IAV-PR8/34 (human H1N1). Consistently, IAV-PR8/34 mutants deprived of IAV-NS1's ISGylation exhibit augmented viral propagation and virulence in both cultured cells and mice. Our study reports the first microbial target of ISGylation and uncovers the direct antiviral function and mechanism of this novel modification.


Assuntos
Citocinas/fisiologia , Vírus da Influenza A Subtipo H1N1/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Processamento de Proteína Pós-Traducional , Ubiquitinas/fisiologia , Proteínas não Estruturais Virais/fisiologia , Animais , Antivirais/farmacologia , Catálise , Linhagem Celular Tumoral , Citocinas/genética , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Interferon beta/antagonistas & inibidores , Interferon beta/fisiologia , Lisina/genética , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/enzimologia , Infecções por Orthomyxoviridae/imunologia , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/imunologia , Ubiquitinas/genética , Proteínas não Estruturais Virais/antagonistas & inibidores , Fatores de Virulência/imunologia
9.
Sci Rep ; 12(1): 14975, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056100

RESUMO

Retro-2 directly interacts with an ER exit site protein, Sec16A, inhibiting ER exit of a Golgi tSNARE, Syntaxin5, which results in rapid re-distribution of Syntaxin5 to the ER. Recently, it was shown that SARS-CoV-2 infection disrupts the Golgi apparatus within 6-12 h, while its replication was effectively inhibited by Retro-2 in cultured human lung cells. Yet, exactly how Retro-2 may influence ultrastructure of the Golgi apparatus have not been thoroughly investigated. In this study, we characterized the effect of Retro-2 treatment on ultrastructure of the Golgi apparatus using electron microscopy and EM tomography. Our initial results on protein secretion showed that Retro-2 treatment does not significantly influence secretion of either small or large cargos. Ultra-structural study of the Golgi, however, revealed rapid accumulation of COPI-like vesicular profiles in the perinuclear area and a partial disassembly of the Golgi stack under electron microscope within 3-5 h, suggesting altered Golgi organization in these cells. Retro-2 treatment in cells depleted of GRASP65/55, the two well-known Golgi structural proteins, induced complete and rapid disassembly of the Golgi into individual cisterna. Taken together, these results suggest that Retro-2 profoundly alters Golgi structure to a much greater extent than previously anticipated.


Assuntos
COVID-19 , Complexo de Golgi , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , SARS-CoV-2 , Proteínas de Transporte Vesicular/metabolismo
10.
Signal Transduct Target Ther ; 7(1): 257, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906201

RESUMO

Highly divergent SARS-CoV-2 variants have continuously emerged and spread around the world, and updated vaccines and innovative vaccination strategies are urgently needed to address the global SARS-COV2 pandemic. Here, we established a series of Ad5-vectored SARS-CoV-2 variant vaccines encoding multiple spike proteins derived from the Alpha, Beta, Gamma, Epsilon, Kappa, Delta and Omicron lineages and analyzed the antibody immune responses induced by single-dose and prime-boost vaccination strategies against emerging SARS-CoV-2 variants of concern (VOCs). Single-dose vaccination with SARS-CoV-2 variant vaccines tended to elicit the optimal self-matched neutralizing effects, and Ad5-B.1.351 produced more broad-spectrum cross-neutralizing antibodies against diverse variants. In contrast, prime-boost vaccination further strengthened and broadened the neutralizing antibody responses against highly divergent SARS-CoV-2 variants. The heterologous administration of Ad5-B.1.617.2 and Ad5-B.1.429 to Ad5-WT-primed mice resulted in superior antibody responses against most VOCs. In particular, the Omicron spike could only stimulate self-matched neutralizing antibodies with infrequent cross-reactivities to other variants used in single-dose vaccination strategies; moreover, with prime-boost regimens, this vaccine elicited an optimal specific neutralizing antibody response to Omicron, and prompted cross-antibody responses against other VOCs that were very similar to those obtained with Ad5-WT booster. Overall, this study delineated the unique characteristics of antibody responses to the SARS-CoV-2 VOC spikes with the single-dose or prime-boost vaccination strategies and provided insight into the vaccine development of next SARS-CoV-2 VOCs.


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes/genética , Anticorpos Antivirais , Formação de Anticorpos , Vacinas contra COVID-19 , Humanos , Camundongos , RNA Viral , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
11.
Commun Biol ; 4(1): 1370, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876695

RESUMO

Altered glycosylation plays an important role during development and is also a hallmark of increased tumorigenicity and metastatic potentials of several cancers. We report here that Tankyrase-1 (TNKS1) controls protein glycosylation by Poly-ADP-ribosylation (PARylation) of a Golgi structural protein, Golgin45, at the Golgi. TNKS1 is a Golgi-localized peripheral membrane protein that plays various roles throughout the cell, ranging from telomere maintenance to Glut4 trafficking. Our study indicates that TNKS1 localization to the Golgi apparatus is mediated by Golgin45. TNKS1-dependent control of Golgin45 protein stability influences protein glycosylation, as shown by Glycomic analysis. Further, FRAP experiments indicated that Golgin45 protein level modulates Golgi glycosyltransferease trafficking in Rab2-GTP-dependent manner. Taken together, these results suggest that TNKS1-dependent regulation of Golgin45 may provide a molecular underpinning for altered glycosylation at the Golgi during development or oncogenic transformation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Glicosiltransferases/farmacocinética , Transdução de Sinais , Tanquirases/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Humanos , Transporte Proteico , Tanquirases/metabolismo
12.
Sci Rep ; 9(1): 12465, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462665

RESUMO

The unique stacked morphology of the Golgi apparatus had been a topic of intense investigation among the cell biologists over the years. We had previously shown that the two Golgin tethers (GM130 and Golgin45) could, to a large degree, functionally substitute for GRASP-type Golgi stacking proteins to sustain normal Golgi morphology and function in GRASP65/55-double depleted HeLa cells. However, compared to well-studied GM130, the exact role of Golgin45 in Golgi structure remains poorly understood. In this study, we aimed to further characterize the functional role of Golgin45 in Golgi structure and identified Golgin45 as a novel Syntaxin5-binding protein. Based primarily on a sequence homology between Golgin45 and GM130, we found that a leucine zipper-like motif in the central coiled-coil region of Golgin45 appears to serve as a Syntaxin5 binding domain. Mutagenesis study of this conserved domain in Golgin45 showed that a point mutation (D171A) can abrogate the interaction between Golgin45 and Syntaxin5 in pull-down assays using recombinant proteins, whereas this mutant Golgin45 binding to Rab2-GTP was unaffected in vitro. Strikingly, exogenous expression of this Syntaxin5 binding deficient mutant (D171A) of Golgin45 in HeLa cells resulted in frequent intercisternal fusion among neighboring Golgi cisterna, as readily observed by EM and EM tomography. Further, double depletion of the two Syntaxin5-binding Golgin tethers also led to significant intercisternal fusion, while double depletion of GRASP65/55 didn't lead to this phenotype. These results suggest that certain tether-SNARE interaction within Golgi stack may play a role in inhibiting intercisternal fusion among neighboring cisternae, thereby contributing to structural integrity of the Golgi stack.


Assuntos
Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas Qa-SNARE/metabolismo , Substituição de Aminoácidos , Complexo de Golgi/genética , Complexo de Golgi/ultraestrutura , Proteínas da Matriz do Complexo de Golgi/genética , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Mutação de Sentido Incorreto , Domínios Proteicos , Proteínas Qa-SNARE/genética
13.
Methods Mol Biol ; 1867: 113-123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155819

RESUMO

Therapeutic proteins have shown great potential in treating life-threatening diseases, but the hydrophilicity and high molecular weight hamper their passing through the cell membrane. Cell-penetrating peptide (CPP)-assisted protein delivery is a simple and efficacious strategy to promote the cellular uptake of therapeutic proteins. We recently demonstrated that the engineered Cys2-His2 zinc-finger domains possess intrinsic cell permeability, which could be leveraged for intracellular protein delivery. Here we applied this method to deliver superoxide dismutase (SOD), a therapeutic protein widely used in preclinical and clinical studies. We present a protocol for the production and delivery of zinc-finger domain-fused SOD. This protocol can be extended for delivering other therapeutic proteins.


Assuntos
Dedos de Zinco CYS2-HIS2 , Permeabilidade da Membrana Celular , Proteínas de Ligação a DNA/genética , Sistemas de Liberação de Medicamentos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/metabolismo , Superóxido Dismutase-1/genética , Células HeLa , Humanos , Proteínas Recombinantes de Fusão/genética
14.
Eur Urol ; 73(3): 322-339, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28927585

RESUMO

BACKGROUND: Global disparities in prostate cancer (PCa) incidence highlight the urgent need to identify genomic abnormalities in prostate tumors in different ethnic populations including Asian men. OBJECTIVE: To systematically explore the genomic complexity and define disease-driven genetic alterations in PCa. DESIGN, SETTING, AND PARTICIPANTS: The study sequenced whole-genome and transcriptome of tumor-benign paired tissues from 65 treatment-naive Chinese PCa patients. Subsequent targeted deep sequencing of 293 PCa-relevant genes was performed in another cohort of 145 prostate tumors. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The genomic alteration landscape in PCa was analyzed using an integrated computational pipeline. Relationships with PCa progression and survival were analyzed using nonparametric test, log-rank, and multivariable Cox regression analyses. RESULTS AND LIMITATIONS: We demonstrated an association of high frequency of CHD1 deletion with a low rate of TMPRSS2-ERG fusion and relatively high percentage of mutations in androgen receptor upstream activator genes in Chinese patients. We identified five putative clustered deleted tumor suppressor genes and provided experimental and clinical evidence that PCDH9, deleted/loss in approximately 23% of tumors, functions as a novel tumor suppressor gene with prognostic potential in PCa. Furthermore, axon guidance pathway genes were frequently deregulated, including gain/amplification of PLXNA1 gene in approximately 17% of tumors. Functional and clinical data analyses showed that increased expression of PLXNA1 promoted prostate tumor growth and independently predicted prostate tumor biochemical recurrence, metastasis, and poor survival in multi-institutional cohorts of patients with PCa. A limitation of this study is that other genetic alterations were not experimentally investigated. CONCLUSIONS: There are shared and salient genetic characteristics of PCa in Chinese and Caucasian men. Novel genetic alterations in PCDH9 and PLXNA1 were associated with disease progression. PATIENT SUMMARY: We reported the first large-scale and comprehensive genomic data of prostate cancer from Asian population. Identification of these genetic alterations may help advance prostate cancer diagnosis, prognosis, and treatment.

15.
FEBS Lett ; 591(18): 2793-2802, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28777890

RESUMO

Golgin45 plays important roles in Golgi stack assembly and is known to bind both the Golgi stacking protein GRASP55 and Rab2 in the medial-Golgi cisternae. In this study, we sought to further characterize the cisternal adhesion complex using a proteomics approach. We report here that Acyl-CoA binding domain containing 3 (ACBD3) is likely to be a novel binding partner of Golgin45. ACBD3 interacts with Golgin45 via its GOLD domain, while its co-expression significantly increases Golgin45 targeting to the Golgi. Furthermore, ACBD3 recruits TBC1D22, a Rab33b GTPase activating protein (GAP), to a large multi-protein complex containing Golgin45 and GRASP55. These results suggest that ACBD3 may provide a scaffolding to organize the Golgi stacking proteins and a Rab33b-GAP at the medial-Golgi.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Imunofluorescência , Proteínas Ativadoras de GTPase/química , Células HeLa , Humanos , Immunoblotting , Proteínas de Membrana/química , Microscopia Confocal , Ligação Proteica , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/química
16.
Int J Antimicrob Agents ; 45(3): 249-54, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25532743

RESUMO

Vibrio cholerae serogroup O139 emerged in 1992 and is one of two major serogroups to have caused cholera epidemics. After 1998, serious multidrug-resistant (MDR) O139 strains quickly became common in China, showing a multidrug resistance profile to eight antibiotics. It is a great threat to public health, and elucidation of its mechanisms of resistance will provide a helpful guide for the clinical treatment and prevention of cholera. In this study, mega-plasmids from MDR V. cholerae O139 strains were identified by pulsed-field gel electrophoresis (PFGE) without enzyme digestion. One plasmid was isolated and sequenced, belonging to the IncA/C family. Ten antibiotic resistance genes were found in the MDR regions, including a blaTEM-20 gene, and these genes endowed the host with resistance to seven antibiotics. This kind of plasmid was positive in 71.2% (198/278) of toxigenic O139 strains, and the rate of plasmid positivity was consistent with the yearly change in MDR rates of these strains. This study reveals an important role of the IncA/C family plasmid in the spread of multiple antibiotic resistance of epidemic V. cholerae serogroup O139 strains, which has recombined with plasmids from different bacterial species and transferred among V. cholerae strains.


Assuntos
Farmacorresistência Bacteriana Múltipla , Plasmídeos/análise , Vibrio cholerae O139/efeitos dos fármacos , Vibrio cholerae O139/genética , Cólera/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Genes Bacterianos , Humanos , Análise de Sequência de DNA , Vibrio cholerae O139/isolamento & purificação
17.
Mol Cell Biol ; 30(10): 2424-36, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20308324

RESUMO

Virus infection induces host antiviral responses, including induction of type I interferons. Transcription factor interferon regulatory factor 3 (IRF3) plays a pivotal role and is tightly regulated in this process. Here, we identify HERC5 (HECT domain and RLD 5) as a specific binding protein of IRF3 by immunoprecipitation. Ectopic expression or knockdown of HERC5 could, respectively, enhance or impair IRF3-mediated gene expression. Mechanistically, HERC5 catalyzes the conjugation of ubiquitin-like protein ISG15 onto IRF3 (Lys193, -360, and -366), thus attenuating the interaction between Pin1 and IRF3, resulting in sustained IRF3 activation. In contrast to results for wild-type IRF3, the mutant IRF3(K193,360,366R) interacts tightly with Pin1, is highly polyubiquitinated, and becomes less stable upon Sendai virus (SeV) infection. Consistently, host antiviral responses are obviously boosted or crippled in the presence or absence of HERC5, respectively. Collectively, this study characterizes HERC5 as a positive regulator of innate antiviral responses. It sustains IRF3 activation via a novel posttranslational modification, ISGylation.


Assuntos
Citocinas/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ubiquitinas/metabolismo , Animais , Linhagem Celular , Citocinas/genética , Técnicas de Silenciamento de Genes , Humanos , Imunidade Inata/fisiologia , Fator Regulador 3 de Interferon/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/genética
18.
Cell Res ; 19(4): 412-28, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19153595

RESUMO

Interferon regulatory factor (IRF)3 is critical for the transcriptional induction of chemokines and cytokines during viral or bacterial invasion. The kinases Tank binding kinase (TBK)1 and Ikappa B kinase (IKK)epsilon can phosphorylate the C-terminal part of IRF3 and play important roles in IRF3 activation. In this study, we show that another kinase, c-Jun-NH(2)-terminal kinase (JNK), phosphorylates IRF3 on its N-terminal serine 173 residue, and TAK1 can stimulate IRF3 phosphorylation via JNK. JNK specific inhibitor SP600125 inhibits the N-terminal phosphorylation without affecting the C-terminal phosphorylation. In addition, IRF3-mediated gene expressions on lipopolysaccharide (LPS) or polyinosinic-cytidylic acid (polyI:C) treatment are severely impaired by SP600125, as well as for reporter gene assay of IRF3 activation. Knockdown of TAK1 further confirmed these observations. Interestingly, constitutive active IRF3(5D) can be inhibited by SP600125; JNK1 can synergize the action of IRF3(5D), but not the S173A-IRF3(5D) mutant. More importantly, polyI:C failed to induce the phosphorylation of mutant S173A and SP600125 dramatically abrogated IRF3 phosphorylation and dimerization that was stimulated by polyI:C. Thus, this study demonstrates that the TAK1-JNK cascade is required for IRF3 function, in addition to TBK1/IKKvarepsilon, uncovering a new mechanism for mitogen-activated protein (MAP) kinase to regulate the innate immunity.


Assuntos
Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Substituição de Aminoácidos , Animais , Antracenos/química , Antracenos/farmacologia , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , Camundongos , Proteínas Mutantes/metabolismo , Poli I-C/farmacologia , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA