Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 17(3)2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28257073

RESUMO

The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive driver's brain EEG signal comfortably under high-speed train-driving conditions. The recorded data are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector machine (SVM) classification algorithm is implemented to determine the vigilance level using the Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early warning device begins to work if fatigue is detected. The simulation and test results demonstrate the feasibility of the proposed fatigue detection system for high-speed train safety.

2.
Neural Comput Appl ; 33(20): 13965-13980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967397

RESUMO

Vehicle drivers driving cars under the situation of drowsiness can cause serious traffic accidents. In this paper, a vehicle driver drowsiness detection method using wearable electroencephalographic (EEG) based on convolution neural network (CNN) is proposed. The presented method consists of three parts: data collection using wearable EEG, vehicle driver drowsiness detection and the early warning strategy. Firstly, a wearable brain computer interface (BCI) is used to monitor and collect the EEG signals in the simulation environment of drowsy driving and awake driving. Secondly, the neural networks with Inception module and modified AlexNet module are trained to classify the EEG signals. Finally, the early warning strategy module will function and it will sound an alarm if the vehicle driver is judged as drowsy. The method was tested on driving EEG data from simulated drowsy driving. The results show that using neural network with Inception module reached 95.59% classification accuracy based on one second time window samples and using modified AlexNet module reached 94.68%. The simulation and test results demonstrate the feasibility of the proposed drowsiness detection method for vehicle driving safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA