Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2121513119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737832

RESUMO

Both chronic obstructive pulmonary disease (COPD) and asthma are severe respiratory diseases. Bitter receptor-mediated bronchodilation is a potential therapy for asthma, but the mechanism underlying the agonistic relaxation of airway smooth muscle (ASM) is not well defined. By exploring the ASM relaxation mechanism of bitter substances, we observed that pretreatment with the bitter substances nearly abolished the methacholine (MCh)-induced increase in the ASM cell (ASMC) calcium concentration, thereby suppressing the calcium-induced contraction release. The ASM relaxation was significantly inhibited by simultaneous deletion of three Gαt proteins, suggesting an interaction between Tas2R and AChR signaling cascades in the relaxation process. Biochemically, the Gαt released by Tas2R activation complexes with AChR and blocks the Gαq cycling of AChR signal transduction. More importantly, a bitter substance, kudinoside A, not only attenuates airway constriction but also significantly inhibits pulmonary inflammation and tissue remodeling in COPD rats, indicating its modulation of additional Gαq-associated pathological processes. Thus, our results suggest that Tas2R activation may be an ideal strategy for halting multiple pathological processes of COPD.


Assuntos
Asma , Músculo Liso , Doença Pulmonar Obstrutiva Crônica , Receptores Acoplados a Proteínas G , Ativação Transcricional , Animais , Asma/genética , Asma/metabolismo , Asma/fisiopatologia , Broncodilatadores/farmacologia , Cálcio/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
2.
J Biol Chem ; 298(1): 101516, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942145

RESUMO

The thymus is the central immune organ, but it is known to progressively degenerate with age. As thymus degeneration is paralleled by the wasting of aging skeletal muscle, we speculated that the thymus may play a role in muscle wasting. Here, using thymectomized mice, we show that the thymus is necessary for skeletal muscle regeneration, a process tightly associated with muscle aging. Compared to control mice, the thymectomized mice displayed comparable growth of muscle mass, but decreased muscle regeneration in response to injury, as evidenced by small and sparse regenerative myofibers along with inhibited expression of regeneration-associated genes myh3, myod, and myogenin. Using paired box 7 (Pax7)-immunofluorescence staining and 5-Bromo-2'-deoxyuridine-incorporation assay, we determined that the decreased regeneration capacity was caused by a limited satellite cell pool. Interestingly, the conditioned culture medium of isolated thymocytes had a potent capacity to directly stimulate satellite cell expansion in vitro. These expanded cells were enriched in subpopulations of quiescent satellite cells (Pax7highMyoDlowEdUpos) and activated satellite cells (Pax7highMyoDhighEdUpos), which were efficiently incorporated into the regenerative myofibers. We thus propose that the thymus plays an essential role in muscle regeneration by directly promoting satellite cell expansion and may function profoundly in the muscle aging process.


Assuntos
Músculo Esquelético , Regeneração , Células Satélites de Músculo Esquelético , Timo , Animais , Diferenciação Celular , Proliferação de Células , Camundongos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Timo/metabolismo , Cicatrização
3.
PLoS Genet ; 16(9): e1009040, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32970669

RESUMO

Genetic hearing loss is a common health problem with no effective therapy currently available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common forms of autosomal dominant non-syndromic deafness. In this study, we established a novel mouse model of the human DFNA15 deafness, with a Pou4f3 gene mutation (Pou4f3Δ) identical to that found in a familial case of DFNA15. The Pou4f3(Δ/+) mice suffered progressive deafness in a similar manner to the DFNA15 patients. Hair cells in the Pou4f3(Δ/+) cochlea displayed significant stereociliary and mitochondrial pathologies, with apparent loss of outer hair cells. Progression of hearing and outer hair cell loss of the Pou4f3(Δ/+) mice was significantly modified by other genetic and environmental factors. Using Pou4f3(-/+) heterozygous knockout mice, we also showed that DFNA15 is likely caused by haploinsufficiency of the Pou4f3 gene. Importantly, inhibition of retinoic acid signaling by the aldehyde dehydrogenase (Aldh) and retinoic acid receptor inhibitors promoted Pou4f3 expression in the cochlear tissue and suppressed the progression of hearing loss in the mutant mice. These data demonstrate Pou4f3 haploinsufficiency as the main underlying cause of human DFNA15 deafness and highlight the therapeutic potential of Aldh inhibitors for treatment of progressive hearing loss.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Células Ciliadas Auditivas/patologia , Perda Auditiva/tratamento farmacológico , Perda Auditiva/etiologia , Proteínas de Homeodomínio/genética , Fator de Transcrição Brn-3C/genética , Animais , Benzaldeídos/farmacologia , Modelos Animais de Doenças , Haploinsuficiência/genética , Perda Auditiva/genética , Perda Auditiva/patologia , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Ruído/efeitos adversos , Quinolinas/farmacologia , Fator de Transcrição Brn-3C/metabolismo , Tretinoína/farmacologia , para-Aminobenzoatos/farmacologia
4.
Proc Natl Acad Sci U S A ; 116(12): 5558-5563, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819895

RESUMO

CD3+CD4-CD8- T cells (double-negative T cells; DNTs) have diverse functions in peripheral immune-related diseases by regulating immunological and inflammatory homeostasis. However, the functions of DNTs in the central nervous system remain unknown. Here, we found that the levels of DNTs were dramatically increased in both the brain and peripheral blood of stroke patients and in a mouse model in a time-dependent manner. The infiltrating DNTs enhanced cerebral immune and inflammatory responses and exacerbated ischemic brain injury by modulating the FasL/PTPN2/TNF-α signaling pathway. Blockade of this pathway limited DNT-mediated neuroinflammation and improved the outcomes of stroke. Our results identified a critical function of DNTs in the ischemic brain, suggesting that this unique population serves as an attractive target for the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica/imunologia , Complexo CD3/imunologia , Acidente Vascular Cerebral/imunologia , Subpopulações de Linfócitos T/imunologia , Idoso de 80 Anos ou mais , Animais , Encéfalo/imunologia , Antígenos CD4/imunologia , Antígenos CD8/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897724

RESUMO

Tetrandrine is well known to act as a calcium channel blocker. It is a potential candidate for a tumor chemotherapy drug without toxicity. Tetrandrine inhibits cancer cell proliferation and induces cell death through apoptosis and autophagy. As cancer patients usually experience complications with sarcopenia or muscle injury, we thus assessed the effects of tetrandrine on skeletal muscle cells. We report in this study that a low dose of tetrandrine (less than 5 µM) does not affect the proliferation of C2C12 myoblasts, but significantly inhibits myogenic differentiation. Consistently, tetrandrine inhibited muscle regeneration after BaCl2-induced injury. Mechanistic experiments showed that tetrandrine decreased the p-mTOR level and increased the levels of LC3 and SQSTM1/p62 during differentiation. Ad-mRFP-GFP-LC3B transfection experiments revealed that the lysosomal quenching of GFP signals was suppressed by tetrandrine. Furthermore, the levels of DNM1L/Drp1, PPARGA1 and cytochrome C (Cyto C), as well as caspase 3 activation and ROS production, were decreased following tetrandrine administration, indicating that the mitochondrial network signaling was inhibited. Our results indicate that tetrandrine has dual effects on autophagic flux in myoblasts during differentiation, activation in the early stage and blockade in the late stage. The ultimate blocking of autophagic flux by tetrandrine led to the disruption of mitochondria remodeling and inhibition of myogenic differentiation. The inhibitory effects of tetrandrine on skeletal muscle differentiation may limit its application in advanced cancer patients. Thus, great attention should be paid to the clinical use of tetrandrine for cancer therapy.


Assuntos
Benzilisoquinolinas , Apoptose , Autofagia , Benzilisoquinolinas/metabolismo , Benzilisoquinolinas/farmacologia , Humanos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo
6.
J Biol Chem ; 295(47): 15988-16001, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32913122

RESUMO

Metaflammation is a primary inflammatory complication of metabolic disorders characterized by altered production of many inflammatory cytokines, adipokines, and lipid mediators. Whereas multiple inflammation networks have been identified, the mechanisms by which metaflammation is initiated have long been controversial. As the mevalonate pathway (MVA) produces abundant bioactive isoprenoids and abnormal MVA has a phenotypic association with inflammation/immunity, we speculate that isoprenoids from the MVA may provide a causal link between metaflammation and metabolic disorders. Using a line with the MVA isoprenoid producer geranylgeranyl diphosphate synthase (GGPPS) deleted, we find that geranylgeranyl pyrophosphate (GGPP) depletion causes an apparent metaflammation as evidenced by abnormal accumulation of fatty acids, eicosanoid intermediates, and proinflammatory cytokines. We also find that GGPP prenylate cytochrome b5 reductase 3 (CYB5R3) and the prenylated CYB5R3 then translocate from the mitochondrial to the endoplasmic reticulum (ER) pool. As CYB5R3 is a critical NADH-dependent reductase necessary for eicosanoid metabolism in ER, we thus suggest that GGPP-mediated CYB5R3 prenylation is necessary for metabolism. In addition, we observe that pharmacological inhibition of the MVA pathway by simvastatin is sufficient to inhibit CYB5R3 translocation and induces smooth muscle death. Therefore, we conclude that the dysregulation of MVA intermediates is an essential mechanism for metaflammation initiation, in which the imbalanced production of eicosanoid intermediates in the ER serve as an important pathogenic factor. Moreover, the interplay of MVA and eicosanoid metabolism as we reported here illustrates a model for the coordinating regulation among metabolite pathways.


Assuntos
Citocromo-B(5) Redutase/metabolismo , Eicosanoides/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Prenilação , Animais , Citocromo-B(5) Redutase/genética , Eicosanoides/genética , Retículo Endoplasmático/genética , Ácido Mevalônico/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Sinvastatina/farmacologia
7.
J Biol Chem ; 295(26): 8656-8667, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32354746

RESUMO

Mutations in the myotubularin 1 (MTM1) gene can cause the fatal disease X-linked centronuclear myopathy (XLCNM), but the underlying mechanism is incompletely understood. In this report, using an Mtm1-/y disease model, we found that expression of the intragenic microRNA miR-199a-1 is up-regulated along with that of its host gene, dynamin 2 (Dnm2), in XLCNM skeletal muscle. To assess the role of miR-199a-1 in XLCNM, we crossed miR-199a-1-/- with Mtm1-/y mice and found that the resultant miR-199a-1-Mtm1 double-knockout mice display markers of improved health, as evidenced by lifespans prolonged by 30% and improved muscle strength and histology. Mechanistic analyses showed that miR-199a-1 directly targets nonmuscle myosin IIA (NM IIA) expression and, hence, inhibits muscle postnatal development as well as muscle maturation. Further analysis revealed that increased expression and phosphorylation of signal transducer and activator of transcription 3 (STAT3) up-regulates Dnm2/miR-199a-1 expression in XLCNM muscle. Our results suggest that miR-199a-1 has a critical role in XLCNM pathology and imply that this microRNA could be targeted in therapies to manage XLCNM.


Assuntos
Dinamina II/genética , MicroRNAs/genética , Miopatias Congênitas Estruturais/genética , Animais , Sistemas CRISPR-Cas , Dinamina II/análise , Feminino , Longevidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/análise , Força Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/patologia
8.
Acta Biochim Biophys Sin (Shanghai) ; 53(5): 567-574, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33710297

RESUMO

Leucocyte adhesion to the vascular endothelium is a critical event in the early inflammatory response to infection and injury. This process is primarily regulated by the expression of cell adhesion molecules (CAMs) in endothelial cells. It has been well documented that tumor necrosis factor alpha (TNF-α) is a key regulator of CAM expression within this process, but its regulatory mechanism remains controversial. To investigate the scenario within this process, we assessed the role of zipper-interacting protein kinase (ZIPK), a serine/threonine kinase with multiple substrates, in CAM expression. We used TNF-α as inflammatory stimulator and found that ZIPK was integrated into the signaling regulation of TNF-α-mediated CAM expression. In human umbilical vein endothelial cells (HUVECs), TNF-α exposure led to significantly increased expression of both intercellular CAM-1 (ICAM-1) and vascular CAM-1 (VCAM-1), along with an increase in the adhesion of THP-1 monocytes to HUVECs. Simultaneously, ZIPK gene was also up-regulated at the transcription level. These effects were clearly inhibited by the ZIPK-specific inhibitor Tc-DAPK6 or small interfering RNA (siRNA) capable of specifically inhibiting ZIPK expression. We thus suggest that both ZIPK activation and ZIPK gene expression are necessary for TNF-α-mediated CAM expression and leucocyte adhesion. Interestingly, ZIPK inhibition also significantly suppressed TNF-α-induced nuclear factor kappa B (NF-κB) activation, indicating that TNF-α-mediated ZIPK expression functions upstream of NF-κB and CAM expression. We thus propose a TNF-α/ZIPK/NF-κB signaling axis for CAM expression that is necessary for leucocyte adhesion to endothelial cells. Our data in this study revealed a potential molecular target for exploring anti-inflammation drugs.


Assuntos
Proteínas Quinases Associadas com Morte Celular/biossíntese , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Adesão Celular/efeitos dos fármacos , Proteínas Quinases Associadas com Morte Celular/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/genética , Transdução de Sinais/genética , Células THP-1 , Molécula 1 de Adesão de Célula Vascular/genética
9.
J Biol Chem ; 294(28): 10954-10968, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31152060

RESUMO

Neurite outgrowth requires coordinated cytoskeletal rearrangements in the growth cone and directional membrane delivery from the neuronal soma. As an essential Rho guanine nucleotide exchange factor (GEF), TRIO is necessary for cytoskeletal dynamics during neurite outgrowth, but its participation in the membrane delivery is unclear. Using co-localization studies, live-cell imaging, and fluorescence recovery after photobleaching analysis, along with neurite outgrowth assay and various biochemical approaches, we here report that in mouse cerebellar granule neurons, TRIO protein pools at the Golgi and regulates membrane trafficking by controlling the directional maintenance of both RAB8 (member RAS oncogene family 8)- and RAB10-positive membrane vesicles. We found that the spectrin repeats in Golgi-resident TRIO confer RAB8 and RAB10 activation by interacting with and activating the RAB GEF RABIN8. Constitutively active RAB8 or RAB10 could partially restore the neurite outgrowth of TRIO-deficient cerebellar granule neurons, suggesting that TRIO-regulated membrane trafficking has an important functional role in neurite outgrowth. Our results also suggest cross-talk between Rho GEF and Rab GEF in controlling both cytoskeletal dynamics and membrane trafficking during neuronal development. They further highlight how protein pools localized to specific organelles regulate crucial cellular activities and functions. In conclusion, our findings indicate that TRIO regulates membrane trafficking during neurite outgrowth in coordination with its GEF-dependent function in controlling cytoskeletal dynamics via Rho GTPases.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neuritos/metabolismo , Crescimento Neuronal/fisiologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Movimento Celular , Cerebelo/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Cones de Crescimento/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Neuritos/fisiologia , Neurônios/metabolismo , Fosfoproteínas/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/fisiologia , Transporte Proteico , Transdução de Sinais/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
10.
FASEB J ; 33(8): 9062-9074, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31180722

RESUMO

The paracellular gap formed by endothelial cell (EC) contraction is fundamental for endothelium permeability, but the mechanism underlying EC contraction has yet to be determined. Here, we identified the zipper-interacting protein kinase (ZIPK) as the kinase for EC contraction and myosin light chain (MLC) phosphorylation. Inhibition of ZIPK activity by pharmacological inhibitors and small interfering RNAs led to a significant decrease in the mono- and diphosphorylation of MLCs along with a contractile response to thrombin, suggesting an essential role of ZIPK in EC paracellular permeability. To assess the role of ZIPK in vivo, we established mouse lines with conditional deletion of Zipk gene. The endothelium-specific deletion of Zipk led to embryonic lethality, whereas the UBC-CreERT2-mediated deletion of Zipk by tamoxifen induction at adulthood caused no apparent phenotype. The induced deletion of Zipk significantly inhibited ischemia-reperfusion-induced blood-brain barrier dysfunction and neuronal injuries from middle cerebral artery occlusion and reperfusion, as evidenced by reduced infarct and edema volume, attenuated Evans blue dye leakage, and improved neuronal behavior. We thus concluded that ZIPK and its phosphorylation of MLC were required for EC contraction and ischemic neuronal injuries. ZIPK may be a prospective therapeutic target for stroke.-Zhang, Y., Zhang, C., Zhang, H., Zeng, W., Li, S., Chen, C., Song, X., Sun, J., Sun, Z., Cui, C., Cao, X., Zheng, L., Wang, P., Zhao, W., Zhang, Z., Xu, Y., Zhu, M., Chen, H. ZIPK mediates endothelial cell contraction through myosin light chain phosphorylation and is required for ischemic-reperfusion injury.


Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , Células Endoteliais/metabolismo , Cadeias Leves de Miosina/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Linhagem Celular , Proteínas Quinases Associadas com Morte Celular/deficiência , Proteínas Quinases Associadas com Morte Celular/genética , Células Endoteliais/citologia , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosforilação , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
11.
Cell Mol Life Sci ; 76(4): 777-789, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30448891

RESUMO

Thoracic aorta perivascular adipose tissue (T-PVAT) has critical roles in regulating vascular homeostasis. However, the developmental characteristics and cellular lineage of adipocyte in the T-PVAT remain unclear. We show that T-PVAT contains three long strip-shaped fat depots, anterior T-PVAT (A-T-PVAT), left lateral T-PVAT (LL-T-PVAT), and right lateral T-PVAT (RL-T-PVAT). A-T-PVAT displays a distinct transcriptional profile and developmental origin compared to the two lateral T-PVATs (L-T-PVAT). Lineage tracing studies indicate that A-T-PVAT adipocytes are primarily derived from SM22α+ progenitors, whereas L-T-PVAT contains both SM22α+ and Myf5+ cells. We also show that L-T-PVAT contains more UCP1+ brown adipocytes than A-T-PVAT, and L-T-PVAT exerts a greater relaxing effect on aorta than A-T-PVAT. Angiotensin II-infused hypertensive mice display greater macrophage infiltration into A-T-PVAT than L-T-PVAT. These combined results indicate that L-T-PVAT has a distinct development from A-T-PVAT with different cellular lineage, and suggest that L-T-PVAT and A-T-PVAT have different physiological and pathological functions.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Aorta Torácica/metabolismo , Perfilação da Expressão Gênica/métodos , Tecido Adiposo/citologia , Tecido Adiposo/crescimento & desenvolvimento , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Ontologia Genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Células-Tronco/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
12.
Genes Dev ; 26(19): 2192-205, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22972934

RESUMO

The Mediator complex functions as a control center, orchestrating diverse signaling, gene activities, and biological processes. However, how Mediator subunits determine distinct cell fates remains to be fully elucidated. Here, we show that Mediator MED23 controls the cell fate preference that directs differentiation into smooth muscle cells (SMCs) or adipocytes. Med23 deficiency facilitates SMC differentiation but represses adipocyte differentiation from the multipotent mesenchymal stem cells. Gene profiling revealed that the presence or absence of Med23 oppositely regulates two sets of genes: the RhoA/MAL targeted cytoskeleton/SMC genes and the Ras/ELK1 targeted growth/adipogenic genes. Mechanistically, MED23 favors ELK1-SRF binding to SMC gene promoters for repression, whereas the lack of MED23 favors MAL-SRF binding to SMC gene promoters for activation. Remarkably, the effect of MED23 on SMC differentiation can be recapitulated in zebrafish embryogenesis. Collectively, our data demonstrate the dual, opposing roles for MED23 in regulating the cytoskeleton/SMC and growth/adipogenic gene programs, suggesting its "Ying-Yang" function in directing adipogenesis versus SMC differentiation.


Assuntos
Adipócitos/citologia , Diferenciação Celular , Complexo Mediador/metabolismo , Miócitos de Músculo Liso/citologia , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Citoesqueleto/genética , Citoesqueleto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Humanos , Complexo Mediador/deficiência , Complexo Mediador/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peixe-Zebra/embriologia
13.
Cancer Sci ; 110(2): 805-816, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30536996

RESUMO

MicroRNAs, which regulate mRNAs, operate through a variety of signaling pathways to participate in the development of colorectal cancer (CRC). In this study, we found that microRNA (miR)-143-3p expression was significantly lower in both CRC and liver metastatic CRC tissues from liver compared with normal colonic tissues. Functional assays showed that miR-143-3p inhibited CRC cell invasion and migration in vitro. Using a bioinformatics approach, we identified miR-143-3p target mRNAs. Among the candidate targets, only the expression of integrin alpha 6 (ITGA6) and ArfGAP with the SH3 domain and ankyrin repeat and PH domain 3 (ASAP3) were significantly reduced by miR-143-3p mimics as examined by western blot, and the metastasis potential of CRC cells was attenuated by endogenous ITGA6 and ASAP3 knockdown, determined by migration and invasion assays. Both ITGA6 and ASAP3 were upregulated in CRC tissues compared to normal tissues. Analysis of the relationship between clinicopathological features and ITGA6/ASAP3 protein expression in 200 patients with CRC showed a significant difference in positive ITGA6 expression between the early stage (I + II) and the advanced stage (III + IV), and ASAP3 expression levels positively correlated with metastasis in the lymph nodes. These results indicate that miR-143-3p acts as an anti-oncogene by downregulating ITGA6/ASAP3 protein expression and could offer new insight into potential therapeutic targets for CRC.


Assuntos
Movimento Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas Ativadoras de GTPase/genética , Integrina alfa6/genética , Metástase Linfática/genética , MicroRNAs/genética , Idoso , Linhagem Celular Tumoral , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Linfonodos/patologia , Metástase Linfática/patologia , Masculino , RNA Mensageiro/genética , Transdução de Sinais/genética , Regulação para Cima/genética
14.
Hum Mol Genet ; 26(23): 4728-4740, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973398

RESUMO

Bipolar disorder, schizophrenia, autism and intellectual disability are complex neurodevelopmental disorders, debilitating millions of people. Therapeutic progress is limited by poor understanding of underlying molecular pathways. Using a targeted search, we identified an enrichment of de novo mutations in the gene encoding the 330-kDa triple functional domain (TRIO) protein associated with neurodevelopmental disorders. By generating multiple TRIO antibodies, we show that the smaller TRIO9 isoform is the major brain protein product, and its levels decrease after birth. TRIO9 contains two guanine nucleotide exchange factor (GEF) domains with distinct specificities: GEF1 activates both Rac1 and RhoG; GEF2 activates RhoA. To understand the impact of disease-associated de novo mutations and other rare sequence variants on TRIO function, we utilized two FRET-based biosensors: a Rac1 biosensor to study mutations in TRIO (T)GEF1, and a RhoA biosensor to study mutations in TGEF2. We discovered that one autism-associated de novo mutation in TGEF1 (K1431M), at the TGEF1/Rac1 interface, markedly decreased its overall activity toward Rac1. A schizophrenia-associated rare sequence variant in TGEF1 (F1538Intron) was substantially less active, normalized to protein level and expressed poorly. Overall, mutations in TGEF1 decreased GEF1 activity toward Rac1. One bipolar disorder-associated rare variant (M2145T) in TGEF2 impaired inhibition by the TGEF2 pleckstrin-homology domain, resulting in dramatically increased TGEF2 activity. Overall, genetic damage to both TGEF domains altered TRIO catalytic activity, decreasing TGEF1 activity and increasing TGEF2 activity. Importantly, both GEF changes are expected to decrease neurite outgrowth, perhaps consistent with their association with neurodevelopmental disorders.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Bases de Dados de Ácidos Nucleicos , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/enzimologia , Domínios Proteicos , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
15.
J Allergy Clin Immunol ; 141(4): 1259-1268.e11, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28754608

RESUMO

BACKGROUND: Allergic inflammation has long been implicated in asthmatic hyperresponsiveness of airway smooth muscle (ASM), but its underlying mechanism remains incompletely understood. Serving as G protein-coupled receptor agonists, several inflammatory mediators can induce membrane depolarization, contract ASM, and augment cholinergic contractile response. We hypothesized that the signal cascade integrating on membrane depolarization by the mediators might involve asthmatic hyperresponsiveness. OBJECTIVE: We sought to investigate the signaling transduction of inflammatory mediators in ASM contraction and assess its contribution in the genesis of hyperresponsiveness. METHODS: We assessed the capacity of inflammatory mediators to induce depolarization currents by electrophysiological analysis. We analyzed the phenotypes of transmembrane protein 16A (TMEM16A) knockout mice, applied pharmacological reagents, and measured the Ca2+ signal during ASM contraction. To study the role of the depolarization signaling in asthmatic hyperresponsiveness, we measured the synergistic contraction by methacholine and inflammatory mediators both ex vivo and in an ovalbumin-induced mouse model. RESULTS: Inflammatory mediators, such as 5-hydroxytryptamin, histamine, U46619, and leukotriene D4, are capable of inducing Ca2+-activated Cl- currents in ASM cells, and these currents are mediated by TMEM16A. A combination of multiple analysis revealed that a G protein-coupled receptor-TMEM16A-voltage-dependent Ca2+ channel signaling axis was required for ASM contraction induced by inflammatory mediators. Block of TMEM16A activity may significantly inhibit the synergistic contraction of acetylcholine and the mediators and hence reduces hypersensitivity. CONCLUSIONS: A G protein-coupled receptor-TMEM16A-voltage-dependent Ca2+ channel axis contributes to inflammatory mediator-induced ASM contraction and synergistically activated TMEM16A by allergic inflammatory mediators with cholinergic stimuli.


Assuntos
Anoctamina-1/metabolismo , Asma/metabolismo , Hiper-Reatividade Brônquica/metabolismo , Canais de Cálcio/metabolismo , Contração Muscular , Músculo Liso/fisiopatologia , Transdução de Sinais , Animais , Asma/fisiopatologia , Biomarcadores/metabolismo , Hiper-Reatividade Brônquica/fisiopatologia , Fenômenos Eletrofisiológicos , Feminino , Cobaias , Masculino , Camundongos , Camundongos Knockout , Fenótipo
16.
Gastroenterology ; 152(5): 1114-1125.e5, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28043906

RESUMO

BACKGROUND & AIMS: The α subunit of the heterotrimeric G stimulatory protein (Gsa), encoded by the guanine nucleotide binding protein, α-stimulating gene (Gnas, in mice), is expressed ubiquitously and mediates receptor-stimulated production of cyclic adenosine monophosphate and activation of the protein kinase A signaling pathway. We investigated the roles of Gsa in vivo in smooth muscle cells of mice. METHODS: We performed studies of mice with Cre recombinase-mediated disruption of Gnas in smooth muscle cells (GsaSMKO and SM22-CreERT2, induced in adult mice by tamoxifen). Intestinal tissues were collected for histologic, biochemical, molecular, cell biology, and physiology analyses. Intestinal function was assessed in mice using the whole-gut transit time test. We compared gene expression patterns of intestinal smooth muscle from mice with vs without disruption of Gnas. Biopsy specimens from ileum of patients with chronic intestinal pseudo-obstruction and age-matched control biopsies were analyzed by immunohistochemistry. RESULTS: Disruption of Gnas in smooth muscle of mice reduced intestinal motility and led to death within 4 weeks. Tamoxifen-induced disruption of Gnas in adult mice impaired contraction of intestinal smooth muscle and peristalsis. More than 80% of these died within 3 months of tamoxifen exposure, with features of intestinal pseudo-obstruction characterized by chronic intestinal dilation and dysmotility. Gsa deficiency reduced intestinal levels of cyclic adenosine monophosphate and transcriptional activity of the cyclic adenosine monophosphate response element binding protein 1 (CREB1); this resulted in decreased expression of the forkhead box F1 gene (Foxf1) and protein, and contractile proteins, such as myosin heavy chain 11; actin, α2, smooth muscle, aorta; calponin 1; and myosin light chain kinase. We found decreased levels of Gsa, FOXF1, CREB1, and phosphorylated CREB1 proteins in intestinal muscle layers of patients with chronic intestinal pseudo-obstruction, compared with tissues from controls. CONCLUSIONS: Gsa is required for intestinal smooth muscle contraction in mice, and its levels are reduced in ileum biopsies of patients with chronic intestinal pseudo-obstruction. Mice with disruption of Gnas might be used to study human chronic intestinal pseudo-obstruction.


Assuntos
Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Motilidade Gastrointestinal/genética , Pseudo-Obstrução Intestinal/metabolismo , Intestinos/fisiologia , Contração Muscular/genética , Músculo Liso/fisiologia , Actinas/metabolismo , Adulto , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cromograninas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP , Humanos , Íleo/metabolismo , Integrases , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Cadeias Pesadas de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Calponinas
17.
Circ Res ; 118(3): 388-99, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699655

RESUMO

RATIONALE: Aortic aneurysm is a life-threatening cardiovascular disorder caused by the predisposition for dissection and rupture. Genetic studies have proved the involvement of the transforming growth factor-ß (TGF-ß) pathway in aortic aneurysm. Smad4 is the central mediator of the canonical TGF-ß signaling pathway. However, the exact role of Smad4 in smooth muscle cells (SMCs) leading to the pathogenesis of aortic aneurysms is largely unknown. OBJECTIVE: To determine the role of smooth muscle Smad4 in the pathogenesis of aortic aneurysms. METHODS AND RESULTS: Conditional gene knockout strategy combined with histology and expression analysis showed that Smad4 or TGF-ß receptor type II deficiency in SMCs led to the occurrence of aortic aneurysms along with an upregulation of cathepsin S and matrix metallopeptidase-12, which are proteases essential for elastin degradation. We further demonstrated a previously unknown downregulation of matrix metallopeptidase-12 by TGF-ß in the aortic SMCs, which is largely abrogated in the absence of Smad4. Chemotactic assay and pharmacologic treatment demonstrated that Smad4-deficient SMCs directly triggered aortic wall inflammation via the excessive production of chemokines to recruit macrophages. Monocyte/macrophage depletion or blocking selective chemokine axis largely abrogated the progression of aortic aneurysm caused by Smad4 deficiency in SMCs. CONCLUSIONS: The findings reveal that Smad4-dependent TGF-ß signaling in SMCs protects against aortic aneurysm formation and dissection. The data also suggest important implications for novel therapeutic strategies to limit the progression of the aneurysm resulting from TGF-ß signaling loss-of-function mutations.


Assuntos
Aneurisma Aórtico/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Smad4/deficiência , Proteína Smad4/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/patologia , Aneurisma Aórtico/prevenção & controle , Catepsinas/metabolismo , Linhagem Celular , Quimiocinas/metabolismo , Quimiotaxia , Elastina/metabolismo , Feminino , Predisposição Genética para Doença , Macrófagos/metabolismo , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteólise , Interferência de RNA , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/deficiência , Receptores de Fatores de Crescimento Transformadores beta/genética , Proteína Smad4/genética , Fatores de Tempo , Transfecção , Regulação para Cima
18.
Proc Natl Acad Sci U S A ; 112(44): 13627-32, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26487685

RESUMO

Inheritance of the callipyge phenotype in sheep is an example of polar overdominance inheritance, an unusual mode of inheritance. To investigate the underlying molecular mechanism, we profiled the expression of the genes located in the Delta-like 1 homolog (Dlk1)-type III iodothyronine deiodinase (Dio3) imprinting region in mice. We found that the transcripts of the microRNA (miR) 379/miR-544 cluster were highly expressed in neonatal muscle and paralleled the expression of the Dlk1. We then determined the in vivo role of the miR-379/miR-544 cluster by establishing a mouse line in which the cluster was ablated. The maternal heterozygotes of young mutant mice displayed a hypertrophic tibialis anterior muscle, extensor digitorum longus muscle, gastrocnemius muscle, and gluteus maximus muscle and elevated expression of the DLK1 protein. Reduced expression of DLK1 was mediated by miR-329, a member of this cluster. Our results suggest that maternal expression of the imprinted miR-379/miR-544 cluster regulates paternal expression of the Dlk1 gene in mice. We therefore propose a miR-based molecular working model for polar overdominance inheritance.


Assuntos
Impressão Genômica , Peptídeos e Proteínas de Sinalização Intercelular/genética , MicroRNAs/genética , Animais , Proteínas de Ligação ao Cálcio , Feminino , Camundongos , Família Multigênica
19.
J Physiol ; 595(19): 6231-6247, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28749013

RESUMO

KEY POINTS: Smooth muscle myosin regulatory light chain (RLC) is phosphorylated by Ca2+ /calmodulin-dependent myosin light chain kinase and dephosphorylated by myosin light chain phosphatase (MLCP). Tracheal smooth muscle contains significant amounts of myosin binding subunit 85 (MBS85), another myosin phosphatase targeting subunit (MYPT) family member, in addition to MLCP regulatory subunit MYPT1. Concentration/temporal responses to carbachol demonstrated similar sensitivities for bovine tracheal force development and phosphorylation of RLC, MYPT1, MBS85 and paxillin. Electrical field stimulation releases ACh from nerves to increase RLC phosphorylation but not MYPT1 or MBS85 phosphorylation. Thus, nerve-mediated muscarinic responses in signalling modules acting on RLC phosphorylation are different from pharmacological responses with bath added agonist. The conditional knockout of MYPT1 or the knock-in mutation T853A in mice had no effect on muscarinic force responses in isolated tracheal tissues. MLCP activity may arise from functionally shared roles between MYPT1 and MBS85, resulting in minimal effects of MYPT1 knockout on contraction. ABSTRACT: Ca2+ /calmodulin activation of myosin light chain kinase (MLCK) initiates myosin regulatory light chain (RLC) phosphorylation for smooth muscle contraction with subsequent dephosphorylation for relaxation by myosin light chain phosphatase (MLCP) containing regulatory (MYPT1) and catalytic (PP1cδ) subunits. RLC phosphorylation-dependent force development is regulated by distinct signalling modules involving protein phosphorylations. We investigated responses to cholinergic agonist treatment vs. neurostimulation by electric field stimulation (EFS) in bovine tracheal smooth muscle. Concentration/temporal responses to carbachol demonstrated tight coupling between force development and RLC phosphorylation but sensitivity differences in MLCK, MYPT1 T853, MYPT1 T696, myosin binding subunit 85 (MBS85), paxillin and CPI-17 (PKC-potentiated protein phosphatase 1 inhibitor protein of 17 kDa) phosphorylations. EFS increased force and phosphorylation of RLC, CPI-17 and MLCK. In the presence of the cholinesterase inhibitor neostigmine, EFS led to an additional increase in phosphorylation of MYPT1 T853, MYPT1 T696, MBS85 and paxillin. Thus, there were distinct pharmacological vs. physiological responses in signalling modules acting on RLC phosphorylation and force responses, probably related to degenerate G protein signalling networks. Studies with genetically modified mice were performed. Expression of another MYPT1 family member, MBS85, was enriched in mouse, as well as bovine tracheal smooth muscle. Carbachol concentration/temporal-force responses were similar in trachea from MYPT1SM+/+ , MYPT1SM-/- and the knock-in mutant mice containing nonphosphorylatable MYPT1 T853A with no differences in RLC phosphorylation. Thus, MYPT1 T853 phosphorylation was not necessary for regulation of RLC phosphorylation in tonic airway smooth muscle. Furthermore, MLCP activity may arise from functionally shared roles between MYPT1 and MBS85, resulting in minimal effects of MYPT1 knockout on contraction.


Assuntos
Miócitos de Músculo Liso/metabolismo , Cadeias Leves de Miosina/metabolismo , Transdução de Sinais , Traqueia/citologia , Animais , Carbacol/farmacologia , Bovinos , Células Cultivadas , Agonistas Colinérgicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Processamento de Proteína Pós-Traducional , Traqueia/metabolismo
20.
J Transl Med ; 15(1): 13, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086815

RESUMO

BACKGROUND: The gastrointestinal motility is affected by gut microbiota and the relationship between them has become a hot topic. However, mechanisms of microbiota in regulating motility have not been well defined. We thus investigated the effect of microbiota depletion by antibiotics on gastrointestinal motility, colonic serotonin levels, and bile acids metabolism. METHODS: After 4 weeks with antibiotics treatments, gastrointestinal and colon transit, defecation frequency, water content, and other fecal parameters were measured and analyzed in both wild-type and antibiotics-treated mice, respectively. Contractility of smooth muscle, serotonin levels, and bile acids levels in wild-type and antibiotics-treated mice were also analyzed. RESULTS: After antibiotics treatment, the richness and diversity of intestinal microbiota decreased significantly, and the fecal of mice had less output (P < 0.01), more water content (P < 0.01), and longer pellet length (P < 0.01). Antibiotics treatment in mice also resulted in delayed gastrointestinal and colonic motility (P < 0.05), and inhibition of phasic contractions of longitudinal muscle from isolated proximal colon (P < 0.01). In antibiotics-treated mice, serotonin, tryptophan hydroxylase 1, and secondary bile acids levels were decreased. CONCLUSION: Gut microbiota play an important role in the regulation of intestinal bile acids and serotonin metabolism, which could probably contribute to the association between gut microbiota and gastrointestinal motility as intermediates.


Assuntos
Antibacterianos/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Serotonina/biossíntese , Animais , Ácidos e Sais Biliares/metabolismo , Ceco/efeitos dos fármacos , Ceco/patologia , Fezes , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Metaboloma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Contração Muscular , Tamanho do Órgão/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA