Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Exp Bot ; 75(1): 483-499, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37781866

RESUMO

DNA demethylase (DML) is involved in plant development and responses to biotic and abiotic stresses; however, its role in plant-herbivore interaction remains elusive. Here, we found that herbivory by the potato tuber moth, Phthorimaea operculella, rapidly induced the genome-wide DNA methylation and accumulation of DML gene transcripts in potato plants. Herbivory induction of DML transcripts was suppressed in jasmonate-deficient plants, whereas exogenous application of methyl jasmonate (MeJA) improved DML transcripts, indicating that the induction of DML transcripts by herbivory is associated with jasmonate signaling. Moreover, P. operculella larvae grew heavier on DML gene (StDML2) knockdown plants than on wild-type plants, and the decreased biosynthesis of jasmonates in the former may be responsible for this difference, since the larvae feeding on these two genotypes supplemented with MeJA showed similar growth. In addition, P. operculella adult moths preferred to oviposit on StDML2 knockdown plants than on wild-type plants, which was associated with the reduced emission of ß-caryophyllene in the former. In addition, supplementing ß-caryophyllene to these two genotypes further disrupted moths' oviposit choice preference for them. Interestingly, in StDML2 knockdown plants, hypermethylation was found at the promoter regions for the key genes StAOS and StAOC in the jasmonate biosynthetic pathway, as well as for the key gene StTPS12 in ß-caryophyllene production. Our findings suggest that knocking down StDML2 can affect herbivore defense via jasmonate signaling and defense compound production in potato plants.


Assuntos
Mariposas , Solanum tuberosum , Animais , Herbivoria , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Insetos , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Mariposas/genética , Mariposas/metabolismo , Larva , DNA
2.
Insect Mol Biol ; 32(5): 528-543, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162032

RESUMO

MicroRNAs (miRNAs) are small single-stranded non-coding RNAs involved in a variety of cellular events by regulating gene expression at the post-transcriptional level. Several core genes in miRNA biogenesis have been reported to participate in a wide range of physiological events, in some insect species. However, the functional significance of miRNA pathway core genes in Nilaparvata lugens remains unknown. In the present study, we conducted a systematic characterisation of five core genes involved in miRNA biogenesis. We first performed spatiotemporal expression analysis and found that miRNA core genes exhibited similar expression patterns, with high expression levels in eggs and relatively high transcriptional levels in the ovaries and fat bodies of females. RNA interference experiments showed that injecting third-instar nymphs with dsRNAs targeting the miRNA core genes, NlAgo1, NlDicer1, and NlDrosha resulted in high mortality rates and various degrees of body melanism, moulting defects, and wing deformities. Further investigations revealed that the suppression of miRNA core genes severely impaired ovarian development and oocyte maturation, resulting in significantly reduced fecundity and disruption of intercellular spaces between follicle cells. Moreover, the expression profiles of miR-34-5p, miR-275-3p, miR-317-3p, miR-14, Let-7-1, and miR-2a-3p were significantly altered in response to the knockdown of miRNA core genes mixture, suggesting that they play essential roles in regulating miRNA-mediated gene expression. Therefore, our results provide a solid theoretical basis for the miRNA pathway in N. lugens and suggest that the NlAgo1, NlDicer1, and NlDrosha-dependent miRNA core genes are essential for the development and reproduction of this agricultural pest.


Assuntos
Hemípteros , MicroRNAs , Feminino , Animais , Reprodução , Interferência de RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Fertilidade/genética , Hemípteros/fisiologia
3.
Ecotoxicol Environ Saf ; 263: 115300, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37494735

RESUMO

Ultraviolet-A (UV-A) radiation directly impacts the growth and spread of Bemisia tabaci. However, the mechanistic pathways of this phenomenon remain unknown. We analyzed B. tabaci transcriptome data after exposure to UV-A radiation for 6 h. The 453 genes were identified whose expression were significantly altered in response to the stress induced by UV-A irradiation. Forty genes were up-regulated, while 413 genes were down-regulated. Enrichment analysis using GO, KEGG, and Genomes databases revealed that the DEGs play key roles in antioxidation and detoxification, protein turnover, metabolic, developmental processes, and immunological response. Among the gene families involved in detoxification, shock, and development, down-regulated DEGs in transcriptional factor gene families were significantly greater than those up-regulated DEGs. Our findings demonstrated that exposure to UV-A stress can suppress immunity and affect the growth and biological parameters of B. tabaci by altering gene regulation. These results suggest a potential utility of UV-A stress in managing B. tabaci under greenhouse conditions.


Assuntos
Perfilação da Expressão Gênica , Hemípteros , Animais , Perfilação da Expressão Gênica/métodos , Transcriptoma , Regulação da Expressão Gênica , Hemípteros/genética , Hemípteros/metabolismo
4.
Plant Cell Environ ; 45(10): 3036-3051, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35924491

RESUMO

Potato, a cool-weather crop, emits volatile organic compounds (VOCs) which attract the specialist herbivore, Phthorimaea operculella, but also this herbivore's parasitic wasp, Trichogramma chilonis, an important biocontrol agent. What happens to this trophic system when heat stress challenges this agro-ecosystem? We studied how high temperature (HT) pre-treatments influence potato's VOC emissions and their subsequent effects on the preferences of insects, as evaluated in oviposition assays and Y-tube olfactometers. HT pre-stressed plants were less attractive to P. operculella adult moths, which were repelled by HT VOCs, but increased the recruitment of the parasitoid, T. chilonis, which were attracted. VOC emissions, including the most abundant constituent, ß-caryophyllene, were enhanced by HT treatments; some constituents elicited stronger behavioural responses than others. Transcripts of many genes in the biosynthetic pathways of these VOCs were significantly enhanced by HT treatment, suggesting increases in de novo biosynthesis. HT increased the plant's stomatal apertures, and exogenous applications of the hormone, ABA, known to suppress stomatal apertures, reduced leaf volatile emissions and affected the HT-altered plant attractions to both insects. From these results, we infer that HT stress affects this plant-insect interaction through its influence on VOC emissions, potentially decreasing herbivore ovipositions while increasing ovipositions of the parasitoid.


Assuntos
Solanum tuberosum , Compostos Orgânicos Voláteis , Vespas , Animais , Ecossistema , Feminino , Resposta ao Choque Térmico , Herbivoria , Plantas/metabolismo , Solanum tuberosum/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Vespas/fisiologia
5.
Insect Mol Biol ; 31(4): 391-402, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35156743

RESUMO

Sphingomyelinases (SMases) are a group of enzymes that catalyse the hydrolysis of sphingomyelins into ceramides and phosphorylcholine. They have been intensively investigated for their pathophysiological roles in mammals whereas much remains unclear about their counterparts in insects. Herein we report the cloning and functional characterization of four SMase homologue genes, designated NlSMase1-4, from brown planthopper (BPH). The phylogenetic analysis revealed that NlSMase1 and NlSMase2 were clustered into acid SMase family, and NlSMase3 and NlSMase4 with neutral SMase family. NlSMase1, NlSMase3 and NlSMase4 were highly expressed in BPH females, and NlSMaes2 in the 5th instar nymph. All four NlSMases had the lowest transcription in BPH males. NlSMase1 and NlSMase4 were highly expressed in BPH ovaries, while NlSMase2 and NlSMase3 in midgut and wings, respectively. Knocking-down of each NlSMase individual by RNA interference (RNAi) caused the ovarian malformation in BPH. The transcriptomic analysis revealed that NlSMase4 knockdown could strongly affect diacylglycerol (DAG)-related metabolisms and their downstream pathways. Further, qRT-PCR analysis of vitellogenin (Vg) genes indicates that the DAG metabolism disorder could interrupt the essential Vg accumulation for BPH oogenesis. Our study demonstrates the vital role of NlSMases in BPH reproductive development and provides new insights into the mediated mechanism of how SMases function.


Assuntos
Hemípteros , Animais , Feminino , Masculino , Hemípteros/fisiologia , Mamíferos/metabolismo , Ovário/metabolismo , Filogenia , Esfingomielina Fosfodiesterase/genética , Vitelogeninas/metabolismo
6.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887156

RESUMO

Insects have a robust capacity to produce offspring for propagation, and the reproductive events of female insects have been achieved at the molecular and physiological levels via regulatory gene pathways. However, the roles of MicroRNAs (miRNAs) in the reproductive development of the brown planthopper (BPH), Nilaparvata lugens, remain largely unexplored. To understand the roles of miRNAs in reproductive development, miRNAs were identified by Solexa sequencing in short-winged (SW) female adults of BPH. Small RNA libraries derived from three developmental phases (1 day, 3 days, and 5 days after emergence) were constructed and sequenced. We identified 905 miRNAs, including 263 known and 642 novel miRNAs. Among them, a total of 43 miRNAs were differentially expressed in the three developmental phases, and 14,568 putative targets for 43 differentially expressed miRNAs (DEMs) were predicted by TargetScan and miRanda. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the predicted miRNA targets illustrated the putative roles for these DEMs in reproduction. The progress events were annotated, including oogenesis, lipid biosynthetic process, and related pathways such as apoptosis, ABC transporters, and amino acid metabolism. Four highly abundant DEMs (miR-9a-5p, miR-34-5p, miR-275-3p, and miR-317-3p) were further screened, and miR-34-5p was confirmed to be involved in the regulation of reproduction. Overexpression of miR-34-5p via injecting its mimics reduced fecundity and decreased Vg expression. Moreover, target genes prediction for miR-34-5p showed they might be involved in 20E signaling cascades, apoptosis, and gonadal development, including hormone receptor 4 (HR4), caspase-1 (Cp-1), and spermatogenesis-associated protein 20 (SPATA20). These findings provide a valuable resource for future studies on the role of miRNAs in BPH reproductive development.


Assuntos
Hemípteros , MicroRNAs , Animais , Feminino , Masculino , Perfilação da Expressão Gênica , Hemípteros/genética , Hemípteros/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Reprodução/genética , Transdução de Sinais/genética
7.
Arch Insect Biochem Physiol ; 106(3): e21765, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33590535

RESUMO

Sphingolipids are ubiquitous structural components of eukaryotic cell membranes which are vital for maintaining the integrity of cells. Alkaline ceramidase is a key enzyme in sphingolipid biosynthesis pathway; however, little is known about the role of the enzyme in the male reproductive system of Drosophila melanogaster. To investigate the impact of alkaline ceramidase (Dacer) on male Drosophila, we got Dacer deficiency mutants (MUs) and found they displayed apparent defects in the testis's phenotype. To profile the molecular changes associated with this abnormal phenotype, we performed de novo transcriptome analyses of the MU and wildtype (WT) testes; and revealed 1239 upregulated genes and 1102 downregulated genes. Then, six upregulated DEGs (papilin [Ppn], croquemort [Crq], terribly reduced optic lobes [Trol], Laminin, Wunen-2, collagen type IV alpha 1 [Cg25C]) and three downregulated DEGs (mucin related 18B [Mur18B], rhomboid-7 [Rho-7], CG3168) were confirmed through quantitative real-time polymerase chain reaction in WT and MU samples. The differentially expressed genes were mainly associated with catalytic activity, oxidoreductase activity and transmembrane transporter activity, which significantly contributed to extracellular matrix-receptor interaction, fatty acids biosynthesis as well as glycine, serine, and threonine metabolism. The results highlight the importance of Dacer in the reproductive system of D. melanogaster and provide valuable resources to dig out the specific biological functions of Dacer in insect reproduction.


Assuntos
Ceramidase Alcalina/genética , Drosophila melanogaster/genética , Testículo/metabolismo , Ceramidase Alcalina/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Genes de Insetos , Masculino , Mutação , Receptores de Superfície Celular/metabolismo , Reprodução , Esfingolipídeos/metabolismo , Testículo/patologia
8.
J Insect Sci ; 19(3)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31115476

RESUMO

Alkaline ceramidase (Dacer) in Drosophila melanogaster was demonstrated to be resistant to paraquat-induced oxidative stress. However, the underlying mechanism for this resistance remained unclear. Here, we showed that sphingosine feeding triggered the accumulation of hydrogen peroxide (H2O2). Dacer-deficient D. melanogaster (Dacer mutant) has higher catalase (CAT) activity and CAT transcription level, leading to higher resistance to oxidative stress induced by paraquat. By performing a quantitative proteomic analysis, we identified 79 differentially expressed proteins in comparing Dacer mutant to wild type. Three oxidoreductases, including two cytochrome P450 (CG3050, CG9438) and an oxoglutarate/iron-dependent dioxygenase (CG17807), were most significantly upregulated in Dacer mutant. We presumed that altered antioxidative activity in Dacer mutant might be responsible for increased oxidative stress resistance. Our work provides a novel insight into the oxidative antistress response in D. melanogaster.


Assuntos
Ceramidase Alcalina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Estresse Oxidativo , Esfingosina/administração & dosagem , Ceramidase Alcalina/efeitos dos fármacos , Ceramidase Alcalina/genética , Animais , Catalase/metabolismo , Proteínas de Drosophila/efeitos dos fármacos , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Peróxido de Hidrogênio/metabolismo , Paraquat , Proteoma
9.
BMC Genomics ; 19(1): 970, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587129

RESUMO

BACKGROUND: The insect gustatory system plays a central role in the regulation of multiple physiological behaviors and the co-evolution between insects and their hosts. The gustatory receptors (Gr) are important to allow insects to sense their environment. It is critical to the selection of foods, mates and oviposition sites of insects. In this study, the Gr family genes of the brown planthopper (BPH) Nilaparvata lugens Stål (Hemiptera: Delphacidae) were identified and analyzed, and their potential relationship to the fecundity of BPH was explored by RNA interference (RNAi). RESULTS: We identified 32 putative Gr genes by analyzing transcriptome and genome data from BPH. Most of these Gr proteins have the typical structure of seven transmembrane domains. The BPH Gr genes (NlGrs) were expressed in virtually all tissues and stages, whilst higher transcript accumulations were found in adult stages and in the midguts of females. Based on the phylogenic analysis, we classified NlGrs into five potential categories, including 2 sugar receptors, 2 Gr43a-like receptors, 7 CO2 receptors, 5 bitter receptors and 13 NlGrs with unknown functions. Moreover, we found that 10 NlGrs have at least two alternative splicing variants, and obtained alternative splicing isoforms of 5 NlGrs. Finally, RNAi of 29 NlGrs showed that 27 of them are related to the transcript levels of two fecundity related genes vitellogenin and vitellogenin receptor. CONCLUSIONS: We found 32 Gr genes in BPH, among which at least 27 are required for normal expression of fecundity markers of this insect pest. These findings provide the basis for the functional study of Grs and the exploration of potential genes involved in the monophagous character of BPH.


Assuntos
Hemípteros/genética , Receptores de Superfície Celular/genética , Processamento Alternativo , Animais , Feminino , Fertilidade/genética , Regulação da Expressão Gênica , Filogenia , RNA/química , RNA/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Receptores de Superfície Celular/classificação , Receptores de Superfície Celular/metabolismo
10.
J Insect Sci ; 17(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28130458

RESUMO

Sphingolipids and their metabolites have been implicated in viral infection and replication in mammal cells but how their metabolizing enzymes in the host are regulated by viruses remains largely unknown. Here we report the identification of 12 sphingolipid genes and their regulation by Rice stripe virus in the small brown planthopper (Laodelphax striatellus Fallén), a serious pest of rice throughout eastern Asia. According to protein sequence similarity, we identified 12 sphingolipid enzyme genes in L. striatellus. By comparing their mRNA levels in viruliferous versus nonviruliferous L. striatellus at different life stages by qPCR, we found that RSV infection upregulated six genes (LsCGT1, LsNAGA1, LsSGPP, LsSMPD4, LsSMS, and LsSPT) in most stages of L. striatellus Especially, four genes (LsCGT1, LsSMPD2, LsNAGA1, and LsSMS) and another three genes (LsNAGA1, LsSGPP, and LsSMS) were significantly upregulated in viruliferous third-instar and fourth-instar nymphs, respectively. HPLC-MS/MS results showed that RSV infection increased the levels of various ceramides, such as Cer18:0, Cer20:0, and Cer22:0 species, in third and fourth instar L. striatellus nymphs. Together, these results demonstrate that RSV infection alters the transcript levels of various sphingolipid enzymes and the contents of sphingolipids in L. striatellus, indicating that sphingolipids may be important for RSV infection or replication in L. striatellus.


Assuntos
Regulação da Expressão Gênica , Hemípteros/genética , Hemípteros/virologia , Proteínas de Insetos/genética , Esfingolipídeos/genética , Tenuivirus/fisiologia , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Hemípteros/enzimologia , Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Masculino , Ninfa/enzimologia , Ninfa/genética , Ninfa/metabolismo , Ninfa/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Esfingolipídeos/metabolismo , Espectrometria de Massas em Tandem
11.
Development ; 140(4): 705-17, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23362344

RESUMO

Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.


Assuntos
Diferenciação Celular/fisiologia , Biologia do Desenvolvimento/tendências , Desenvolvimento Embrionário/fisiologia , Marcação de Genes/métodos , Ensaios de Triagem em Larga Escala/métodos , Modelos Biológicos , Células-Tronco Pluripotentes/fisiologia , Humanos
12.
J Virol ; 89(8): 4296-310, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653432

RESUMO

UNLABELLED: The ubiquitin/26S proteasome system plays a vital role in regulating host defenses against pathogens. Previous studies have highlighted different roles for the ubiquitin/26S proteasome in defense during virus infection in both mammals and plants, but their role in the vectors that transmit those viruses is still unclear. In this study, we determined that the 26S proteasome is present in the small brown planthopper (SBPH) (Laodelphax striatellus) and has components similar to those in plants and mammals. There was an increase in the accumulation of Rice stripe virus (RSV) in the transmitting vector SBPH after disrupting the 26S proteasome, indicating that the SBPH 26S proteasome plays a role in defense against RSV infection by regulating RSV accumulation. Yeast two-hybrid analysis determined that a subunit of the 26S proteasome, named RPN3, could interact with RSV NS3. Transient overexpression of RPN3 had no effect on the RNA silencing suppressor activity of RSV NS3. However, NS3 could inhibit the ability of SBPH rpn3 to complement an rpn3 mutation in yeast. Our findings also indicate that the direct interaction between RPN3 and NS3 was responsible for inhibiting the complementation ability of RPN3. In vivo, we found an accumulation of ubiquitinated protein in SBPH tissues where the RSV titer was high, and silencing of rpn3 resulted in malfunction of the SBPH proteasome-mediated proteolysis. Consequently, viruliferous SBPH in which RPN3 was repressed transmitted the virus more effectively as a result of higher accumulation of RSV. Our results suggest that the RSV NS3 protein is able to hijack the 26S proteasome in SBPH via a direct interaction with the RPN3 subunit to attenuate the host defense response. IMPORTANCE: We show, for the first time, that the 26S proteasome components are present in the small brown planthopper and play a role in defense against its vectored plant virus (RSV). In turn, RSV encodes a protein that subverts the SBPH 26S proteasome via direct interaction with the 26S proteasome subunit RPN3. Our results imply that the molecular arms race observed in plant hosts can be extended to the insect vector that transmits those viruses.


Assuntos
Hemípteros/metabolismo , Hemípteros/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Tenuivirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Sequência de Bases , Western Blotting , Glutationa Transferase , Hemípteros/genética , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Plasmídeos/genética , Complexo de Endopeptidases do Proteassoma/genética , Interferência de RNA , Análise de Sequência de DNA , Tenuivirus/genética , beta-Galactosidase
13.
Plant Physiol ; 167(1): 11-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25371551

RESUMO

Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops.


Assuntos
Elementos de DNA Transponíveis/genética , Oryza/genética , Plantas Geneticamente Modificadas/genética , Animais , Bacillus thuringiensis/genética , DNA Bacteriano/genética , DNA de Plantas/genética , Resistência à Doença/genética , Marcadores Genéticos/genética , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Lepidópteros , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Genética/genética , Transgenes/genética
14.
Arch Insect Biochem Physiol ; 89(1): 35-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25639603

RESUMO

In this study, we constructed a high-quality cDNA library from the antennae of the Chilo suppressalis (Walker) (Lepidoptera: Pyralidae). A total of 1,235 colonies with inserts greater than 0.7 kb were sequenced and analyzed. Homology searching coupled with bioinformatics analysis identified 15 and 7 cDNA sequences, respectively, encoding putative odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). A phylogenetic tree of CsupCSPs showed that each CsupCSP has orthologs in Manduca sexta and Bombyx mori with strong bootstrapping support. One CSP was either very specific or more related to the CSPs of another species than to conspecific CSP. The expression profiles of the OBPs and CSPs in different tissues were measured by real-time quantitative PCR. The results revealed that of the 11 OBP genes, the transcript levels of CsupOBP1, CsupOBP5, and CsupOBP7 were higher in both male and female antennae than those in other tissues. And CsupCSP7 was highly expressed in both male and female antennae. Based on these results, the possible physiological functions of CsupOBPs and CsupCSPs were discussed.


Assuntos
Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Mariposas/genética , Receptores Odorantes/genética , Sequência de Aminoácidos , Animais , Etiquetas de Sequências Expressas , Feminino , Perfilação da Expressão Gênica , Biblioteca Gênica , Proteínas de Insetos/metabolismo , Masculino , Dados de Sequência Molecular , Mariposas/metabolismo , Filogenia , Receptores Odorantes/metabolismo
15.
Breed Sci ; 65(4): 333-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26366116

RESUMO

Stem borers and leaffolders are the main pests that cause severe damage in rice (Oryza sativa L.) production worldwide. We developed the first photoperiod- and thermo-sensitive male sterility (PTSMS) rice 208S with the cry1Ab/1Ac Bacillus thuringiensis (Bt) gene, through sexual crossing with Huahui 1 (elite line with the cry1Ab/1Ac gene). The novel 208S and its hybrids presented high and stable resistance to stem borers and leaffolders, and the content of Cry1Ab/1Ac protein in chlorophyllous tissues achieved the identical level as donor and showed little accumulation in non-chlorophyllous tissue. No dominant dosage effect in the Bt gene was observed in 208S and its derived hybrids. An analysis of fertility transition traits indicated that 208S was completely sterile under long day length/high temperature, but partially fertile under short day length/low temperature. With fine grain quality and favorable combining ability, 208S had no observed negative effects on fertility and agronomic traits from Bt (cry1Ab/1Ac). Additionally, 208S as a male sterile line showed no fertility decrease caused by Bt transgenic process, as it is the case in Huahui 1. Thus, 208S has great application value in two-line hybrid production for insect resistance, and can also be used as a bridge material in rice Bt transgenic breeding.

16.
Hortic Res ; 11(6): uhae121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919561

RESUMO

Root-associated microbiomes play a crucial role in plant responses to biotic and abiotic stresses. Plants can enrich beneficial microbes to increase their stress-relieving ability. Above-ground insect herbivory is among the most detrimental stresses for plants, especially to crop production. However, few studies have explored how root-associated microbiomes respond to herbivores and influence plant-defense functions under herbivory stress. We investigate the changes and functional role of root-associated microbial communities under herbivory stress using leafminer (Liriomyza trifolii) and cowpea (Vigna unguiculata) as a focal system. We did this by using a combination of 16S ribosomal RNA gene profiling and metagenomic sequencing to test for differences in co-occurrence networks and functions between cowpea plants infested and noninfested with leafminers. The results demonstrated that leafminer infestation caused a shift in the rhizosphere microbiome, which was characterized by a significant variation in microbiome community structure and composition, the selection of hub microbes involved in nitrogen (N) metabolism, and functional enrichment related to N metabolism. Notably, nitrogen-fixing bacteria Bradyrhizobium species were actively enriched and selected to be hubs in the rhizosphere. Inoculation with Bradyrhizobium enhanced cowpea performance under leafminer stress and increased protease inhibitor levels to decrease leafminer fitness. Overall, our study characterized the changes of root-associated microbiota between leafminer-infested and noninfested cowpea plants and revealed the mechanisms underlying the rhizosphere microbiome shift that enhance plant performance and defense against herbivory. Our findings provide further support for the notion that plants enrich rhizosphere microbes to counteract aboveground insect herbivores.

17.
Pest Manag Sci ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837578

RESUMO

BACKGROUND: The brown planthopper (BPH), Nilaparvata lugens, is one of the most destructive pests of rice. Owing to the rapid adaptation of BPH to many pesticides and resistant varieties, identifying putative gene targets for developing RNA interference (RNAi)-based pest management strategies has received much attention for this pest. The glucoprotein papilin is the most abundant component in the basement membranes of many organisms, and its function is closely linked to development. RESULTS: In this study, we identified a papilin homologous gene in BPH (NlPpn). Quantitative Real-time PCR analysis showed that the transcript of NlPpn was highly accumulated in the egg stage. RNAi of NlPpn in newly emerged BPH females caused nonhatching phenotypes of their eggs, which may be a consequence of the maldevelopment of their embryos. Moreover, the transcriptomic analysis identified 583 differentially expressed genes between eggs from the dsGFP- and dsNlPpn-treated insects. Among them, the 'structural constituent of cuticle' cluster ranked first among the top 15 enriched GO terms. Consistently, ultrastructural analysis unveiled that dsNlPpn-treated eggs displayed a discrete and distorted serosal endocuticle lamellar structure. Furthermore, the hatchability of BPH eggs was also successfully reduced by the topical application of NlPpn-dsRNA-layered double hydroxide nanosheets onto the adults. CONCLUSION: Our findings demonstrate that NlPpn is essential to maintaining the regular structure of the serosal cuticle and the embryonic development in BPH, indicating NlPpn could be a potential target for pest control during the egg stage. © 2024 Society of Chemical Industry.

18.
Nat Aging ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834883

RESUMO

Oxidative phosphorylation, essential for energy metabolism and linked to the regulation of longevity, involves mitochondrial and nuclear genes. The functions of these genes and their evolutionary rate covariation (ERC) have been extensively studied, but little is known about whether other nuclear genes not targeted to mitochondria evolutionarily and functionally interact with mitochondrial genes. Here we systematically examined the ERC of mitochondrial and nuclear benchmarking universal single-copy ortholog (BUSCO) genes from 472 insects, identifying 75 non-mitochondria-targeted nuclear genes. We found that the uncharacterized gene CG11837-a putative ortholog of human DIMT1-regulates insect lifespan, as its knockdown reduces median lifespan in five diverse insect species and Caenorhabditis elegans, whereas its overexpression extends median lifespans in fruit flies and C. elegans and enhances oxidative phosphorylation gene activity. Additionally, DIMT1 overexpression protects human cells from cellular senescence. Together, these data provide insights into the ERC of mito-nuclear genes and suggest that CG11837 may regulate longevity across animals.

19.
Sci Adv ; 10(17): eadk3852, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657063

RESUMO

Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.


Assuntos
Migração Animal , Genômica , Vento , Animais , Genômica/métodos , Hemípteros/genética , Genoma de Inseto , Genética Populacional
20.
Arch Insect Biochem Physiol ; 82(1): 29-42, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23027616

RESUMO

Sensory neuron membrane proteins (SNMPs), which are located on the dendritic membrane of olfactory neurons, were considered as important components involved in pheromone reception in insects. In Drosophila melanogaster, mutants without SNMP are unable to evoke neuronal activities in the presence of pheromone cis-vaccenyl acetate (cVA). So deeply understanding the SNMPs functions may help to develop pheromone-mediated insect pest management tactics. The present study reports the identification and characterization of CmedSNMP1 and CmedSNMP2, two candidate SNMPs in the rice leaffolder, Cnaphalocrocis medinalis, one of the serious rice insect pests in Asia. The comparison of amino acid sequences shows that CmedSNMP1 and CmedSNMP2 are very similar to the previously reported SNMPs isolated from moths such as Ostrinia nubilalis and O. furnacalis, respectively, but the two CmedSNMPs share low identity with each other. The distribution patterns of two CmedSNMPs in different tissues of adult moths were examined using RT-PCR and quantitative real-time PCR. Although the two genes are expressed not only in antennae but also in nonolfactory tissues such as wings, legs, and body; the relative transcription level shows both CmedSNMP1 and CmedSNMP2 are highly enriched in antennae. The dN/dS ratios of the two CmedSNMPs indicate that the two genes are all subject to purifying selection and evolved to be functional genes. This work presents for the first time a study on the SNMPs of C. medinalis, which may help in providing guidance to future functional research of moth SNMPs.


Assuntos
Proteínas de Insetos/metabolismo , Proteínas de Membrana/metabolismo , Mariposas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , China , Clonagem Molecular , DNA Complementar , Feminino , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Masculino , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mariposas/genética , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA