Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 9(3)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36958027

RESUMO

The high wastage rate and low survival rate of seed cells in conventional bone tissue engineering (BTE) are always a challenge for tissue regeneration. Constructing scaffolds that could continuously recruit endogenous stem cells is considered a novel way to promote tissue repair. In this study, a GelMA fiber hydrogel membrane loaded interleukin 8 (IL8) (IL8-GelMA), was prepared via electrostatic spinning technology. Compared with Gelatin fiber, GelMA fiber possessed a smooth morphology with nanoscale diameter and better physical properties including hydrophilicity, elastic modulus, swelling rate and degradation rate. In addition, IL8-GelMA fiber membranes could lead an osteogenic differentiation of BMSCs. Moreover, the results of chemotaxis experiment demonstrated that both IL8 and IL8-GelMA fiber membranes promote the migration of BMSCsin vitro. These results suggested that IL8-GelMA fiber membranes can be used for cell-free scaffold of bone repair, which can not only recruit endogenous BMSCs, but also promote osteogenic differentiation of BMSCs.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Osteogênese , Alicerces Teciduais , Interleucina-8/metabolismo , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA