Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(7): 5614-21, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26862710

RESUMO

Direct fabrication of semiconductor light emitting devices on metal foils is beneficial, because it brings flexibility and good heat sink in the devices. In this work, we have grown ZnO on the commercially available stainless steel foils by metal-organic chemical vapor deposition for the first time. With the increase of growth temperature, the morphology changes from a thin film structure to closely stacked columns, and eventually to nanorods. The change in the migration ability of adatoms due to the increase of growth temperature plays an important role in the evolution of morphology. The samples with nanorod morphology exhibit relatively better crystallinity and optical quality. A PEDOT: PSS/PMMA/ZnO device was fabricated based on the grown ZnO nanorods. The metal-insulator-semiconductor type device shows an uncommon symmetric I-V curve. Under reverse bias, the device emits fairly pure UV light, which comes from the near band edge emission of ZnO. The working mechanism of the devices has been discussed, and a model mainly based on the Poole-Frenkel effect is proposed to describe the charge transportation of the devices.

2.
Phys Chem Chem Phys ; 17(21): 13813-20, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25803480

RESUMO

Vertically aligned ZnO/MgO coaxial nanowire (NW) arrays were prepared on sapphire substrates by metal-organic chemical vapor deposition combined with a sputtering system. We present a comparative investigation of the morphological and optical properties of the produced heterostructures with different MgO layer thicknesses. Photoluminescence measurements showed that the optical performances of ZnO/MgO coaxial NWs were strongly dependent on the MgO layer thickness. The intensity of deep-level emission (DLE) decreased monotonously with the increase of MgO thickness, while the enhancement of ultraviolet (UV) emission showed a critical thickness of 15 nm, achieving a maximum intensity ratio (∼226) of IUV/IDLE at the same time. The significantly improved exciton emission efficiency of the coaxial NW structures allows us to study the surface passivation effect, photogenerated carrier confinement and transfer in terms of energy band theory. More importantly, we achieved an ultralow threshold (4.5 mA, 0.58 A cm(-2)) electrically driven UV lasing action based on the ZnO/MgO NW structures by constructing an Au/MgO/ZnO metal/insulator/semiconductor diode, and the continuous-current-driven diode shows a good temperature tolerance. The results obtained on the unique optical properties of ZnO/MgO coaxial NWs shed light on the design and development of ZnO-based UV laser diodes assembled with nanoscale building blocks.

3.
Nanoscale ; 8(19): 10035-42, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27140056

RESUMO

Recently, perovskite-based light-emitting diodes based on organometal halide emitters have attracted much attention because of their excellent properties of high color purity, tunable emission wavelength and a low-temperature processing technique. As is well-known, organic light-emitting diodes have shown powerful capabilities in this field; however, the fabrication of these devices typically relies on high-temperature and high-vacuum processes, which increases the final cost of the product and renders them uneconomical for use in large-area displays. Organic/inorganic hybrid halide perovskites match with these material requirements, as it is possible to prepare such materials with high crystallinity through solution processing at low temperature. Herein, we demonstrated a high-brightness green light-emitting diode based on PEDOT: PSS/CH3NH3PbBr3/ZnO sandwich structures by a spin-coating method combined with a sputtering system. Under forward bias, a dominant emission peak at ∼530 nm with a low full width of half-maximum (FWHM) of 30 nm can be achieved at room temperature. Owing to the high surface coverage of the CH3NH3PbBr3 layer and a device design based on carrier injection and a confinement configuration, the proposed diode exhibits good electroluminescence performance, with an external quantum efficiency of 0.0645%. More importantly, we investigated the working stability of the studied diode under continuous operation to verify the sensitivity of the electroluminescence performance to ambient atmosphere and to assess the suitability of the diode for practical applications. Moreover, the underlying reasons for the undesirable emission decay are tentatively discussed. This demonstration of an effective green electroluminescence based on CH3NH3PbBr3 provides valuable information for the design and development of perovskites as efficient emitters, thus facilitating their use in existing applications and suggesting new potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA