Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Anim Genet ; 55(1): 134-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38098441

RESUMO

This study aimed at identifying genes associated with loin muscle area (LMA), loin muscle depth (LMD) and backfat thickness (BFT). We performed single-trait and multi-trait genome-wide association studies (GWASs) after genotyping 685 Duroc × (Landrace × Yorkshire) (DLY) pigs using the Geneseek Porcine 50K SNP chip. In the single-trait GWASs, we identified two, eight and two significant SNPs associated with LMA, LMD and BFT, respectively, and searched genes within the 1 Mb region near the significant SNPs with relevant functions as candidate genes. Consequently, we identified one (DOCK5), three (PID1, PITX2, ELOVL6) and three (CCR1, PARP14, CASR) promising candidate genes for LMA, LMD and BFT, respectively. Moreover, the multi-trait GWAS identified four significant SNPs associated with the three traits. In conclusion, the GWAS analysis of LMA, LMD and BFT in a DLY pig population identified several associated SNPs and candidate genes, further deepening our understanding of the genetic basis of these traits, and they may be useful for marker-assisted selection to improve the three traits in DLY pigs.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Suínos , Animais , Músculos , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
BMC Genomics ; 23(1): 590, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964005

RESUMO

BACKGROUND: Carcass traits are important in pig breeding programs for improving pork production. Understanding the genetic variants underlies complex phenotypes can help explain trait variation in pigs. In this study, we integrated a weighted single-step genome-wide association study (wssGWAS) and copy number variation (CNV) analyses to map genetic variations and genes associated with loin muscle area (LMA), loin muscle depth (LMD) and lean meat percentage (LMP) in Duroc pigs. RESULTS: Firstly, we performed a genome-wide analysis for CNV detection using GeneSeek Porcine SNP50 Bead chip data of 3770 pigs. A total of 11,100 CNVs were detected, which were aggregated by overlapping 695 CNV regions (CNVRs). Next, we investigated CNVs of pigs from the same population by whole-genome resequencing. A genome-wide analysis of 21 pigs revealed 23,856 CNVRs that were further divided into three categories (851 gain, 22,279 loss, and 726 mixed), which covered 190.8 Mb (~ 8.42%) of the pig autosomal genome. Further, the identified CNVRs were used to determine an overall validation rate of 68.5% for the CNV detection accuracy of chip data. CNVR association analyses identified one CNVR associated with LMA, one with LMD and eight with LMP after applying stringent Bonferroni correction. The wssGWAS identified eight, six and five regions explaining more than 1% of the additive genetic variance for LMA, LMD and LMP, respectively. The CNVR analyses and wssGWAS identified five common regions, of which three regions were associated with LMA and two with LMP. Four genes (DOK7, ARAP1, ELMO2 and SLC13A3) were highlighted as promising candidates according to their function. CONCLUSIONS: We determined an overall validation rate for the CNV detection accuracy of low-density chip data and constructed a genomic CNV map for Duroc pigs using resequencing, thereby proving a value genetic variation resource for pig genome research. Furthermore, our study utilized a composite genetic strategy for complex traits in pigs, which will contribute to the study for elucidating the genetic architecture that may be influenced and regulated by multiple forms of variations.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Animais , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Suínos/genética
3.
BMC Genomics ; 22(1): 12, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407097

RESUMO

BACKGROUND: Average daily gain (ADG) and lean meat percentage (LMP) are the main production performance indicators of pigs. Nevertheless, the genetic architecture of ADG and LMP is still elusive. Here, we conducted genome-wide association studies (GWAS) and meta-analysis for ADG and LMP in 3770 American and 2090 Canadian Duroc pigs. RESULTS: In the American Duroc pigs, one novel pleiotropic quantitative trait locus (QTL) on Sus scrofa chromosome 1 (SSC1) was identified to be associated with ADG and LMP, which spans 2.53 Mb (from 159.66 to 162.19 Mb). In the Canadian Duroc pigs, two novel QTLs on SSC1 were detected for LMP, which were situated in 3.86 Mb (from 157.99 to 161.85 Mb) and 555 kb (from 37.63 to 38.19 Mb) regions. The meta-analysis identified ten and 20 additional SNPs for ADG and LMP, respectively. Finally, four genes (PHLPP1, STC1, DYRK1B, and PIK3C2A) were detected to be associated with ADG and/or LMP. Further bioinformatics analysis showed that the candidate genes for ADG are mainly involved in bone growth and development, whereas the candidate genes for LMP mainly participated in adipose tissue and muscle tissue growth and development. CONCLUSIONS: We performed GWAS and meta-analysis for ADG and LMP based on a large sample size consisting of two Duroc pig populations. One pleiotropic QTL that shared a 2.19 Mb haplotype block from 159.66 to 161.85 Mb on SSC1 was found to affect ADG and LMP in the two Duroc pig populations. Furthermore, the combination of single-population and meta-analysis of GWAS improved the efficiency of detecting additional SNPs for the analyzed traits. Our results provide new insights into the genetic architecture of ADG and LMP traits in pigs. Moreover, some significant SNPs associated with ADG and/or LMP in this study may be useful for marker-assisted selection in pig breeding.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Canadá , Carne , Fenótipo , Polimorfismo de Nucleotídeo Único , Sus scrofa/genética , Suínos/genética
4.
BMC Genomics ; 22(1): 332, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964879

RESUMO

BACKGROUND: In the process of pig breeding, the average daily gain (ADG), days to 100 kg (AGE), and backfat thickness (BFT) are directly related to growth rate and fatness. However, the genetic mechanisms involved are not well understood. Copy number variation (CNV), an important source of genetic diversity, can affect a variety of complex traits and diseases and has gradually been thrust into the limelight. In this study, we reported the genome-wide CNVs of Duroc pigs using SNP genotyping data from 6627 animals. We also performed a copy number variation region (CNVR)-based genome-wide association studies (GWAS) for growth and fatness traits in two Duroc populations. RESULTS: Our study identified 953 nonredundant CNVRs in U.S. and Canadian Duroc pigs, covering 246.89 Mb (~ 10.90%) of the pig autosomal genome. Of these, 802 CNVRs were in U.S. Duroc pigs with 499 CNVRs were in Canadian Duroc pigs, indicating 348 CNVRs were shared by the two populations. Experimentally, 77.8% of nine randomly selected CNVRs were validated through quantitative PCR (qPCR). We also identified 35 CNVRs with significant association with growth and fatness traits using CNVR-based GWAS. Ten of these CNVRs were associated with both ADG and AGE traits in U.S. Duroc pigs. Notably, four CNVRs showed significant associations with ADG, AGE, and BFT, indicating that these CNVRs may play a pleiotropic role in regulating pig growth and fat deposition. In Canadian Duroc pigs, nine CNVRs were significantly associated with both ADG and AGE traits. Further bioinformatic analysis identified a subset of potential candidate genes, including PDGFA, GPER1, PNPLA2 and BSCL2. CONCLUSIONS: The present study provides a necessary supplement to the CNV map of the Duroc genome through large-scale population genotyping. In addition, the CNVR-based GWAS results provide a meaningful way to elucidate the genetic mechanisms underlying complex traits. The identified CNVRs can be used as molecular markers for genetic improvement in the molecular-guided breeding of modern commercial pigs.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Animais , Canadá , Genoma , Polimorfismo de Nucleotídeo Único , Sus scrofa/genética , Suínos/genética
5.
BMC Genomics ; 21(1): 344, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380955

RESUMO

BACKGROUND: More teats are necessary for sows to nurse larger litters to provide immunity and nutrient for piglets prior to weaning. Previous studies have reported the strong effect of an insertion mutation in the Vertebrae Development Associated (VRTN) gene on Sus scrofa chromosome 7 (SSC7) that increased the number of thoracic vertebrae and teat number in pigs. We used genome-wide association studies (GWAS) to map genetic markers and genes associated with teat number in two Duroc pig populations with different genetic backgrounds. A single marker method and several multi-locus methods were utilized. A meta-analysis that combined the effects and P-values of 34,681 single nucleotide polymorphisms (SNPs) that were common in the results of single marker GWAS of American and Canadian Duroc pigs was conducted. We also performed association tests between the VRTN insertion and teat number in the same populations. RESULTS: A total of 97 SNPs were found to be associated with teat number. Among these, six, eight and seven SNPs were consistently detected with two, three and four multi-locus methods, respectively. Seven SNPs were concordantly identified between single marker and multi-locus methods. Moreover, 26 SNPs were newly found by multi-locus methods to be associated with teat number. Notably, we detected one consistent quantitative trait locus (QTL) on SSC7 for teat number using single-locus and meta-analysis of GWAS and the top SNP (rs692640845) explained 8.68% phenotypic variance of teat number in the Canadian Duroc pigs. The associations between the VRTN insertion and teat number in two Duroc pig populations were substantially weaker. Further analysis revealed that the effect of VRTN on teat number may be mediated by its LD with the true causal mutation. CONCLUSIONS: Our study suggested that VRTN insertion may not be a strong or the only candidate causal mutation for the QTL on SSC7 for teat number in the analyzed Duroc pig populations. The combination of single-locus and multi-locus GWAS detected additional SNPs that were absent using only one model. The identified SNPs will be useful for the genetic improvement of teat number in pigs by assigning higher weights to associated SNPs in genomic selection.


Assuntos
Glândulas Mamárias Animais/fisiologia , Modelos Genéticos , Locos de Características Quantitativas , Animais , Cruzamento , Mapeamento Cromossômico/veterinária , Feminino , Genética Populacional , Genoma , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Sus scrofa , Suínos
6.
Animals (Basel) ; 14(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38997951

RESUMO

Artificial insemination plays a crucial role in pig production, particularly in enhancing the genetic potential of elite boars. To accelerate genetic progress for semen traits in pigs, it is vital to understand and identify the underlying genetic markers associated with desirable traits. Herein, we genotyped 1238 Landrace boars with GeneSeek Porcine SNP50 K Bead chip and conducted genome-wide association studies to identify genetic regions and candidate genes associated with 12 semen traits. Our study identified 38 SNPs associated with the analyzed 12 semen traits. Furthermore, we identified several promising candidate genes, including HIBADH, DLG1, MED1, APAF1, MGST3, MTG2, and ZP4. These candidate genes have the potential function to facilitate the breeding of boars with improved semen traits. By further investigating and understanding the roles of these genes, we can develop more effective breeding strategies that contribute to the overall enhancement of pig production. The results of our study provide valuable insights for the pig-breeding industry and support ongoing research efforts to optimize genetic selection for superior semen traits.

7.
Evol Appl ; 17(2): e13651, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362509

RESUMO

The use of whole-genome sequence (WGS) data is expected to improve genomic prediction (GP) power of complex traits because it may contain mutations that in strong linkage disequilibrium pattern with causal mutations. However, a few previous studies have shown no or small improvement in prediction accuracy using WGS data. Incorporating prior biological information into GP seems to be an attractive strategy that might improve prediction accuracy. In this study, a total of 6334 pigs were genotyped using 50K chips and subsequently imputed to the WGS level. This cohort includes two prior discovery populations that comprise 294 Landrace pigs and 186 Duroc pigs, as well as two validation populations that consist of 3770 American Duroc pigs and 2084 Canadian Duroc pigs. Then we used annotation information and genome-wide association study (GWAS) from the WGS data to make GP for six growth traits in two Duroc pig populations. Based on variant annotation, we partitioned different genomic classes, such as intron, intergenic, and untranslated regions, for imputed WGS data. Based on GWAS results of WGS data, we obtained trait-associated single-nucleotide polymorphisms (SNPs). We then applied the genomic feature best linear unbiased prediction (GFBLUP) and genomic best linear unbiased prediction (GBLUP) models to estimate the genomic estimated breeding values for growth traits with these different variant panels, including six genomic classes and trait-associated SNPs. Compared with 50K chip data, GBLUP with imputed WGS data had no increase in prediction accuracy. Using only annotations resulted in no increase in prediction accuracy compared to GBLUP with 50K, but adding annotation information into the GFBLUP model with imputed WGS data could improve the prediction accuracy with increases of 0.00%-2.82%. In conclusion, a GFBLUP model that incorporated prior biological information might increase the advantage of using imputed WGS data for GP.

8.
Nat Commun ; 15(1): 5587, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961076

RESUMO

Hybrid mapping is a powerful approach to efficiently identify and characterize genes regulated through mechanisms in cis. In this study, using reciprocal crosses of the phenotypically divergent Duroc and Lulai pig breeds, we perform a comprehensive multi-omic characterization of regulatory variation across the brain, liver, muscle, and placenta through four developmental stages. We produce one of the largest multi-omic datasets in pigs to date, including 16 whole genome sequenced individuals, as well as 48 whole genome bisulfite sequencing, 168 ATAC-Seq and 168 RNA-Seq samples. We develop a read count-based method to reliably assess allele-specific methylation, chromatin accessibility, and RNA expression. We show that tissue specificity was much stronger than developmental stage specificity in all of DNA methylation, chromatin accessibility, and gene expression. We identify 573 genes showing allele specific expression, including those influenced by parent-of-origin as well as allele genotype effects. We integrate methylation, chromatin accessibility, and gene expression data to show that allele specific expression can be explained in great part by allele specific methylation and/or chromatin accessibility. This study provides a comprehensive characterization of regulatory variation across multiple tissues and developmental stages in pigs.


Assuntos
Alelos , Metilação de DNA , Animais , Suínos/genética , Feminino , Cromatina/genética , Cromatina/metabolismo , Especificidade de Órgãos/genética , Fígado/metabolismo , Placenta/metabolismo , Masculino , Encéfalo/metabolismo , Sus scrofa/genética , Sequenciamento Completo do Genoma , Gravidez , Multiômica
9.
Animals (Basel) ; 13(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36899665

RESUMO

Internal organ weight is an essential indicator of growth status as it reflects the level of growth and development in pigs. However, the associated genetic architecture has not been well explored because phenotypes are difficult to obtain. Herein, we performed single-trait and multi-trait genome-wide association studies (GWASs) to map the genetic markers and genes associated with six internal organ weight traits (including heart weight, liver weight, spleen weight, lung weight, kidney weight, and stomach weight) in 1518 three-way crossbred commercial pigs. In summation, single-trait GWASs identified a total of 24 significant single- nucleotide polymorphisms (SNPs) and 5 promising candidate genes, namely, TPK1, POU6F2, PBX3, UNC5C, and BMPR1B, as being associated with the six internal organ weight traits analyzed. Multi-trait GWAS identified four SNPs with polymorphisms localized on the APK1, ANO6, and UNC5C genes and improved the statistical efficacy of single-trait GWASs. Furthermore, our study was the first to use GWASs to identify SNPs associated with stomach weight in pigs. In conclusion, our exploration of the genetic architecture of internal organ weights helps us better understand growth traits, and the key SNPs identified could play a potential role in animal breeding programs.

10.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37098184

RESUMO

In the pork industry chain, carcass cutting is crucial for enhancing the commercial value of pork carcasses. However, the genetic mechanisms underlying carcass component weights remain poorly understood. Here, we used a combined genome-wide association study (GWAS) approach that integrated single- and multi-locus models to map genetic markers and genes associated with the weights of seven carcass components in Duroc × Landrace × Yorkshire (DLY) pigs. As multi-locus GWAS captures more single nucleotide polymorphisms (SNPs) with large effects than single-locus GWAS, the combined GWAS approach detected more SNPs than using the single-locus model alone. We identified 177 nonredundant SNPs associated with these traits in 526 DLY pigs, including boneless butt shoulder (BBS), boneless picnic shoulder (BPS), boneless leg (BL), belly (BELLY), front fat (FF), rear fat (RF), and skin-on whole loin (SLOIN). Using single-locus GWAS, we identified a quantitative trait locus (QTL) for SLOIN on Sus scrofa chromosome 15 (SSC15). Notably, a single SNP (ASGA0069883) in the proximity of this QTL was consistently detected by all GWAS models (one single-locus and four multi-locus models) and explained more than 4% of the phenotypic variance. Our findings suggest that the involved gene, MYO3B, is proposed to be a strong candidate for SLOIN. Further analysis also identified several candidate genes related to BBS (PPP3CA and CPEB4), BPS (ECH1), FF (CACNB2 and ZNF217), BELLY (FGFRL1), BL (CHST11), and RF (LRRK2). The identified SNPs can be used as molecular markers for the genetic improvement of pork carcasses in the molecular-guided breeding of modern commercial pigs.


Carcass cutting is the most effective method for enhancing the commercial value of pork carcasses in the industry chain. However, the genetic mechanisms underlying carcass component weights remain elusive. In this study, we used a combination of single- and multi-locus models to increase the power of genome-wide association analysis. We identified 177 important genetic variants that are potentially promising candidate markers for marker-assisted selection in breeding. Further investigation revealed one quantitative trait locus region and several candidate genes (PPP3CA, CPEB4, ECH1, CACNB2, ZNF217, FGFRL1, CHST11, LRRK2) associated with the weights of seven carcass components in Duroc × Landrace × Yorkshire pigs.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Suínos/genética , Estudo de Associação Genômica Ampla/veterinária , Fenótipo , Polimorfismo de Nucleotídeo Único
11.
Animals (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570223

RESUMO

Body conformation is the most direct production index, which can fully reflect pig growth status and is closely related to critical economic traits. In this study, we conducted a genome-wide association study (GWAS) on body conformation traits in a population of 1518 Duroc × (Landrace × Yorkshire) commercial pigs. These traits included body length (BL), body height (BH), chest circumference (CC), abdominal circumference (AC), and waist circumference (WC). Both the mixed linear model (MLM) and fixed and random model circulating probability unification (FarmCPU) approaches were employed for the analysis. Our findings revealed 60 significant single nucleotide polymorphisms (SNPs) associated with these body conformation traits in the crossbred pig population. Specifically, sixteen SNPs were significantly associated with BL, three SNPs with BH, thirteen SNPs with CC, twelve SNPs with AC, and sixteen SNPs with WC. Moreover, we identified several promising candidate genes located within the genomic regions associated with body conformation traits. These candidate genes include INTS10, KIRREL3, SOX21, BMP2, MAP4K3, SOD3, FAM160B1, ATL2, SPRED2, SEC16B, and RASAL2. Furthermore, our analysis revealed a novel significant quantitative trait locus (QTL) on SSC7 specifically associated with waist circumference, spanning an 84 kb interval. Overall, the identification of these significant SNPs and potential candidate genes in crossbred commercial pigs enhances our understanding of the genetic basis underlying body conformation traits. Additionally, these findings provide valuable genetic resources for pig breeding programs.

12.
Animals (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889833

RESUMO

The number of teats is a crucial reproductive trait with significant economic implications on maternal capacity and litter size. Consequently, improving this trait is essential to facilitate genetic selection for increased litter size. In this study, we performed a genome-wide association study (GWAS) of the number of teats in a three-way crossbred commercial Duroc × (Landrace × Yorkshire) (DLY) pig population comprising 1518 animals genotyped with the 50K BeadChip. Our analysis identified crucial quantitative trait loci (QTL) for the number of teats, containing the ABCD4 and VRTN genes on porcine chromosome 7. Our results establish SNP variants of ABCD4 and VRTN as new molecular markers for improving the number of teats in DLY pigs. Furthermore, the most significant noteworthy single nucleotide polymorphism (SNP) (7_97568284) was identified within the ABCD4 gene, exhibiting a significant association with the total teat number traits. This SNP accounted for a substantial proportion of the genetic variance, explaining 6.64% of the observed variation. These findings reveal a novel gene on SSC7 for the number of teats and provide a deeper understanding of the genetic mechanisms underlying reproductive traits.

13.
J Anim Sci Biotechnol ; 14(1): 67, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161604

RESUMO

BACKGROUND: Pork quality can directly affect customer purchase tendency and meat quality traits have become valuable in modern pork production. However, genetic improvement has been slow due to high phenotyping costs. In this study, whole genome sequence (WGS) data was used to evaluate the prediction accuracy of genomic best linear unbiased prediction (GBLUP) for meat quality in large-scale crossbred commercial pigs. RESULTS: We produced WGS data (18,695,907 SNPs and 2,106,902 INDELs exceed quality control) from 1,469 sequenced Duroc × (Landrace × Yorkshire) pigs and developed a reference panel for meat quality including meat color score, marbling score, L* (lightness), a* (redness), and b* (yellowness) of genomic prediction. The prediction accuracy was defined as the Pearson correlation coefficient between adjusted phenotypes and genomic estimated breeding values in the validation population. Using different marker density panels derived from WGS data, accuracy differed substantially among meat quality traits, varied from 0.08 to 0.47. Results showed that MultiBLUP outperform GBLUP and yielded accuracy increases ranging from 17.39% to 75%. We optimized the marker density and found medium- and high-density marker panels are beneficial for the estimation of heritability for meat quality. Moreover, we conducted genotype imputation from 50K chip to WGS level in the same population and found average concordance rate to exceed 95% and r2 = 0.81. CONCLUSIONS: Overall, estimation of heritability for meat quality traits can benefit from the use of WGS data. This study showed the superiority of using WGS data to genetically improve pork quality in genomic prediction.

14.
Commun Biol ; 6(1): 577, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253973

RESUMO

Genetic mapping to identify genes and alleles associated with or causing economically important quantitative trait variation in livestock animals such as pigs is a major goal in animal genetic improvement. Despite recent advances in high-throughput genotyping technologies, the resolution of genetic mapping in pigs remains poor due in part to the low density of genotyped variant sites. In this study, we overcame this limitation by developing a reference haplotype panel for pigs based on 2259 whole genome-sequenced animals representing 44 pig breeds. We evaluated software combinations and breed composition to optimize the imputation procedure and achieved an average concordance rate in excess of 96%, a non-reference concordance rate of 88%, and an r2 of 0.85. We demonstrated in two case studies that genotype imputation using this resource can dramatically improve the resolution of genetic mapping. A public web server has been developed to allow the pig genetics community to fully utilize this resource. We expect this resource to facilitate genetic mapping and accelerate genetic improvement in pigs.


Assuntos
Genoma , Nucleotídeos , Animais , Suínos/genética , Haplótipos , Mapeamento Cromossômico , Genótipo
15.
J Anim Sci ; 100(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35034121

RESUMO

Backfat thickness (BFT) is complex and economically important traits in the pig industry, since it reflects fat deposition and can be used to measure the carcass lean meat percentage in pigs. In this study, all 6,550 pigs were genotyped using the Geneseek Porcine 50K SNP Chip to identify SNPs related to BFT and to search for candidate genes through genome-wide association analysis in two Duroc populations. In total, 80 SNPs, including 39 significant and 41 suggestive SNPs, and 6 QTLs were identified significantly associated with the BFT. In addition, 9 candidate genes, including a proven major gene MC4R, 3 important candidate genes (RYR1, HMGA1, and NUDT3) which were previously described as related to BFT, and 5 novel candidate genes (SIRT2, NKAIN2, AMH, SORCS1, and SORCS3) were found based on their potential functional roles in BFT. The functions of candidate genes and gene set enrichment analysis indicate that most important pathways are related to energy homeostasis and adipogenesis. Finally, our data suggest that most of the candidate genes can be directly used for genetic improvement through molecular markers, except that the MC4R gene has an antagonistic effect on growth rate and carcass lean meat percentage in breeding. Our results will advance our understanding of the complex genetic architecture of BFT traits and laid the foundation for additional genetic studies to increase carcass lean meat percentage of pig through marker-assisted selection and/or genomic selection.


Backfat thickness (BFT) is a complex and economically important trait in the pig industry because it reflects fat deposition and can be used to measure the carcass lean meat percentage in pigs. In this study, two Duroc populations were genotyped using SNP chips, and genome-wide association analysis was used to identify SNPs and candidate genes related to BFT. A number of genetic markers and candidate genes including MC4R, RYR1, HMGA1, NUDT3, SIRT2, NKAIN2, AMH, SORCS1, and SORCS3 were identified to be significantly related to BFT. Our data suggest that many of the candidate genes can be directly used for genetic improvement through molecular markers.


Assuntos
Tecido Adiposo , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Suínos , Animais , Estudo de Associação Genômica Ampla/veterinária , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Suínos/genética
16.
Front Vet Sci ; 9: 855933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573406

RESUMO

Runs of homozygosity (ROH) are widely used to estimate genomic inbreeding, which is linked to inbreeding depression on phenotypes. However, the adverse effects of specific homozygous regions on phenotypic characteristics are rarely studied in livestock. In this study, the 50 K SNP data of 3,770 S21 Duroc (American origin) and 2,096 S22 Duroc (Canadian origin) pigs were used to investigate the harmful ROH regions on five economic traits. The results showed that the two Duroc lines had different numbers and distributions of unfavorable ROHs, which may be related to the different selection directions and intensities between the two lines. A total of 114 and 58 ROH segments were found with significant adverse effects on the economic traits of S21 and S22 pigs, respectively. Serval pleiotropic ROHs were detected to reduce two or multiple phenotypic performances in two Duroc populations. Candidate genes in these shared regions were mainly related to growth, fertility, immunity, and fat deposition. We also observed that some ROH genotypes may cause opposite effects on different traits. This study not only enhances our understanding of the adverse effects of ROH on phenotypes, but also indicates that ROH information could be incorporated into breeding programs to estimate and control the detrimental effects of homozygous regions.

17.
Foods ; 11(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36230219

RESUMO

Meat quality is of importance in consumer acceptance and purchasing tendency of pork. However, the genetic architecture of pork meat quality traits remains elusive. Herein, we conducted genome-wide association studies to detect single nucleotide polymorphisms (SNPs) and genes affecting meat pH and meat color (L*, lightness; a*, redness; b*, yellowness) in 1518 three-way crossbred pigs. All individuals were genotyped using the GeneSeek Porcine 50K BeadChip. In sum, 30 SNPs and 20 genes are found to be associated with eight meat quality traits. Notably, we detect one significant quantitative trait locus (QTL) on SSC15 with a 143 kb interval for meat pH (pH_12h), together with the most promising candidate TNS1. Interestingly, two newly identified SNPs located in the TTLL4 gene demonstrate the highest phenotypic variance of pH_12h in this QTL, at 2.67%. The identified SNPs are useful for the genetic improvement of meat quality traits in pigs by assigning higher weights to associated SNPs in genomic selection.

18.
Front Vet Sci ; 9: 832633, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350434

RESUMO

Runs of homozygosity (ROH) are widely used to investigate genetic diversity, demographic history, and positive selection signatures of livestock. Commercial breeds provide excellent materials to reveal the landscape of ROH shaped during the intense selection process. Here, we used the GeneSeek Porcine 50K single-nucleotide polymorphism (SNP) Chip data of 3,770 American Duroc (AD) and 2,096 Canadian Duroc (CD) pigs to analyze the genome-wide ROH. First, we showed that AD had a moderate genetic differentiation with CD pigs, and AD had more abundant genetic diversity and significantly lower level of inbreeding than CD pigs. In addition, sows had larger levels of homozygosity than boars in AD pigs. These differences may be caused by differences in the selective intensity. Next, ROH hotspots revealed that many candidate genes are putatively under selection for growth, sperm, and muscle development in two lines. Population-specific ROHs inferred that AD pigs may have a special selection for female reproduction, while CD pigs may have a special selection for immunity. Moreover, in the overlapping ROH hotspots of two Duroc populations, we observed a missense mutation (rs81216249) located in the growth and fat deposition-related supergene (ARSB-DMGDH-BHMT) region. The derived allele of this variant originated from European pigs and was nearly fixed in Duroc pigs. Further selective sweep and association analyses indicated that this supergene was subjected to strong selection and probably contributed to the improvement of body weight and length in Duroc pigs. These findings will enhance our understanding of ROH patterns in different Duroc lines and provide promising trait-related genes and a functional-altering marker that can be used for genetic improvement of pigs.

19.
Animals (Basel) ; 12(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36359036

RESUMO

Improvement of carcass features is an essential goal in pig genetic breeding programs. Backfat (BF) and loin muscle area (LMA) are important carcass production metrics and useful indicators of pig production performance and lean meat rate. However, the genetic architecture of BF and LMA traits remains elusive. To identify quantitative trait loci (QTLs) and genes associated with these traits, we performed a genome-wide association study (GWAS) using imputation-based whole genome sequencing data for four phenotypes (adjusted 100 kg BF and LMA, adjusted 100 kg BF EBV and LMA EBV) in 1131 pigs from 3 breeds (French Yorkshire, Landrace, and Duroc). After genotype imputation and quality control, 14,163,315 single nucleotide polymorphisms (SNPs) were retained for further analysis. For the adjusted 100 kg BF trait, using the 2-LOD drop method, a QTL with a 13.4 Kb interval (2.91 to 2.93 Mb on SSC2) and containing a SHANK2 gene was defined. In addition, two QTLs with 135.40 Kb (from 66.10 to 66.23 Mb) and 3.12 Kb (from 66.886 to 66.889 Mb) intervals containing CCND2 and TSPAN11 genes, respectively, were found on SSC5. For the BF-EBV trait, two QTLs (128.77 Kb from 66.10 to 66.23 Mb on SSC5 and 42.10 Kb from 2.89 to 2.93 Mb on SSC2) were identified. Notably, CCND2 and SHANK2 were the only candidate genes in their respective QTL interval. Furthermore, we detected a 3.33 Kb (66.106 to 66.110 Mb on SSC2) haplotype block which was detected as affecting the BF_EBV trait, which only contained the CCND2 gene. Thus, we suggested CCND2 and SHANK2 as strong candidate genes for regulating the BF trait for pigs. The empirical confidence intervals of the QTLs were 1.14 Mb (165.65 to 166.79 Mb on SSC6) for adjusted 100 kg LMA and 1.49 Mb (165.26-166.74 Mb on SSC6) for LMA-EBV. These two confidence intervals contained 13 and 28 annotated genes, respectively. Our results provide a deeper understanding of the genetic basis of pig carcass traits. The identified molecular markers will be useful for selecting breeding lines for breeding pigs with superior carcass traits.

20.
Front Vet Sci ; 8: 725367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557543

RESUMO

Duroc pigs are famous for their high growth rate, feed conversion efficiency, and lean meat percentage. Given that they have been subjected to artificial selection and breeding in multiple countries, various lines with obvious differences in production performance have formed. In this study, we genotyped 3,770 American Duroc (AD) pigs and 2,098 Canadian Duroc (CD) pigs using the GeneSeek Porcine SNP50 Beadchip to dissect the genetic differences and potential selection genes of growth traits in these two Duroc pig lines. Population structure detection showed that there were significant genetic differences between the two Duroc pig lines. Hence, we performed F ST and cross-population extended haplotype homozygosity (XP-EHH) analyses between the two lines. As a result, we identified 38 annotated genes that were significantly enriched in the gland development pathway in the AD line, and 61 annotated genes that were significantly enriched in the immune-related pathway in the CD line. For three growth traits including backfat thickness (BFT), loin muscle depth (LMD), and loin muscle area (LMA), we then performed selection signature detection at 5 and 10% levels within the line and identified different selected regions and a series of candidate genes that are involved in lipid metabolism and skeletal muscle development or repair, such as IRX3, EBF2, WNT10B, TLR2, PITX3, and SGCD. The differences in selected regions and genes between the two lines may be the cause of the differences in growth traits. Our study suggests significant genetic differences between the AD and CD lines, which provide a theoretical basis for selecting different Duroc lines as sires for different needs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA