Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Molecules ; 29(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124852

RESUMO

A phospholipid bilayer is a typical structure that serves crucial functions in various cells and organelles. However, it is not unusual for it to take part in pathological processes. The cell membrane may be a binding target for amyloid-forming proteins, becoming a factor modulating the oligomerization process leading to amyloid deposition-a hallmark of amyloidogenic diseases-e.g., Alzheimer's disease. The information on the mechanisms governing the oligomerization influenced by the protein-membrane interactions is scarce. Therefore, our study aims to describe the interactions between DPPA, a cell membrane mimetic, and amyloidogenic protein human cystatin C. Circular dichroism spectroscopy and differential scanning calorimetry were used to monitor (i) the secondary structure of the human cystatin C and (ii) the phase transition temperature of the DPPA, during the protein-membrane interactions. NMR techniques were used to determine the protein fragments responsible for the interactions, and molecular dynamics simulations were applied to provide a molecular structure representing the interaction. The obtained data indicate that the protein interacts with DPPA, submerging itself into the bilayer via the AS region. Additionally, the interaction increases the content of α-helix within the protein's secondary structure and stabilizes the whole molecule against denaturation.


Assuntos
Membrana Celular , Cistatina C , Ligação Proteica , Cistatina C/química , Cistatina C/metabolismo , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Simulação de Dinâmica Molecular , Dicroísmo Circular , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Estrutura Secundária de Proteína , Varredura Diferencial de Calorimetria
2.
Molecules ; 29(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202853

RESUMO

The design and development of hybrid compounds as a new class of drug candidates remains an excellent opportunity to improve the pharmacological properties of drugs (including enzymatic stability, efficacy and pharmacokinetic and pharmacodynamic profiles). In addition, considering various complex diseases and/or disorders, the conjugate chemistry approach is highly acceptable and justified. Opioids have long been recognized as the most potent analgesics and serve as the basic pharmacophore for potent hybrid compounds that may be useful in pain management. However, a risk of tolerance and physical dependence exists. Since dopamine receptors have been implicated in the aforementioned adverse effects of opioids, the construction of a hybrid with dual action at opioid and dopamine receptors is of interest. Herein, we present nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulation results for LENART01, an opioid-ranatensin hybrid peptide. Apart from molecular docking, protein-ligand interactions were also assessed in vitro using a receptor binding assay, which proved LENART01 to be bound to mu-opioid and dopamine receptors, respectively.


Assuntos
Analgésicos Opioides , Bombesina , Analgésicos Opioides/farmacologia , Dopamina , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Receptores Dopaminérgicos , Peptídeos Opioides , Espectroscopia de Ressonância Magnética
3.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328834

RESUMO

Thyroid hemiagenesis (THA) is an inborn absence of one thyroid lobe of largely unknown etiopathogenesis. The aim of the study was to reveal genetic factors responsible for thyroid maldevelopment in two siblings with THA. None of the family members presented with congenital heart defect. The samples were subjected to whole-exome sequencing (WES) (Illumina, TruSeq Exome Enrichment Kit, San Diego, CA 92121, USA). An ultra-rare variant c.839C>T (p.Pro280Leu) in NKX2-5 gene (NM_004387.4) was identified in both affected children and an unaffected father. In the mother, the variant was not present. This variant is reported in population databases with 0.0000655 MAF (GnomAD v3, dbSNP rs761596254). The affected amino acid position is moderately conserved (positive scores in PhyloP: 1.364 and phastCons: 0.398). Functional prediction algorithms showed deleterious impact (dbNSFP v4.1, FATHMM, SIFT) or benign (CADD, PolyPhen-2, Mutation Assessor). According to ACMG criteria, variant is classified as having uncertain clinical significance. For the first time, NKX2-5 gene variants were found in two siblings with THA, providing evidence for its potential contribution to the pathogenesis of this type of thyroid dysgenesis. The presence of the variant in an unaffected parent, carrier of p.Pro280Leu variant, suggests potential contribution of yet unidentified additional factors determining the final penetrance and expression.


Assuntos
Irmãos , Disgenesia da Tireoide , Criança , Exoma , Proteína Homeobox Nkx-2.5/genética , Humanos , Mutação , Disgenesia da Tireoide/genética , Disgenesia da Tireoide/patologia
4.
Inorg Chem ; 60(23): 18048-18057, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34781677

RESUMO

Gly-His-Lys (GHK) is a tripeptide present in the human bloodstream that exhibits a number of biological functions. Its activity is attributed to the copper-complexed form, Cu(II)GHK. Little is known, however, about the molecular aspects of the mechanism of its action. Here, we examined the reaction of Cu(II)GHK with reduced glutathione (GSH), which is the strongest reductant naturally occurring in human plasma. Spectroscopic techniques (UV-vis, CD, EPR, and NMR) and cyclic voltammetry helped unravel the reaction mechanism. The impact of temperature, GSH concentration, oxygen access, and the presence of ternary ligands on the reaction were explored. The transient GSH-Cu(II)GHK complex was found to be an important reaction intermediate. The kinetic and redox properties of this complex, including tuning of the reduction rate by ternary ligands, suggest that it may provide a missing link in copper trafficking as a precursor of Cu(I) ions, for example, for their acquisition by the CTR1 cellular copper transporter.


Assuntos
Complexos de Coordenação/metabolismo , Cobre/metabolismo , Glutationa/metabolismo , Oligopeptídeos/metabolismo , Compostos de Sulfidrila/metabolismo , Complexos de Coordenação/sangue , Complexos de Coordenação/química , Cobre/sangue , Cobre/química , Glutationa/sangue , Glutationa/química , Humanos , Estrutura Molecular , Oligopeptídeos/sangue , Oligopeptídeos/química , Oxirredução , Compostos de Sulfidrila/sangue , Compostos de Sulfidrila/química
5.
Chem Biodivers ; 18(2): e2000883, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33427369

RESUMO

Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a result, a reduced number of MHC class I molecules appear on the surface of infected cells and, thus, the immune system is not efficiently activated. BoHV-1-encoded UL49.5 protein is one such TAP transporter inhibitor. This protein binds to TAP in such a way that its N-terminal fragment interacts with the loops of the TAP complex, and the C-terminus stimulates proteasomal degradation of TAP. Previous studies have indicated certain amino acid residues, especially the RRE(9-11) motif, within the helical structure of the UL49.5 N-terminal fragment, as being crucial to the protein's activity. In this work, we investigated the effects of modifications within the RRE region on the spatial structure of the UL49.5 N-terminal fragment. The introduced RRE(9-11) variations were designed to abolish or stabilize the structure of the α-helix and, consequently, to increase or decrease protein activity compared to the wild type. The terminal structure of the peptides was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane-mimetic or membrane-model environments. Our structural results show that in the RRE(9-11)AAA and E11G peptides the helical structure has been stabilized, whereas for the RRE(9-11)GGG peptide, as expected, the helix structure has partially unfolded compared to the native structure. These RRE modifications, in the context of the entire UL49.5 proteins, slightly altered their biological activity in human cells.


Assuntos
Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/química , Rinotraqueíte Infecciosa Bovina/virologia , Proteínas do Envelope Viral/química , Motivos de Aminoácidos , Animais , Bovinos , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química , Conformação Proteica , Estabilidade Proteica
6.
Molecules ; 26(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546456

RESUMO

Phosphodiesterase 5 (PDE5) is one of the most extensively studied phosphodiesterases that is highly specific for cyclic-GMP hydrolysis. PDE5 became a target for drug development based on its efficacy for treatment of erectile dysfunction. In the present study, we synthesized four novel analogues of the phosphodiesterase type 5 (PDE5) inhibitor-tadalafil, which differs in (i) ligand flexibility (rigid structure of tadalafil vs. conformational flexibility of newly synthesized compounds), (ii) stereochemistry associated with applied amino acid building blocks, and (iii) substitution with bromine atom in the piperonyl moiety. For both the intermediate and final compounds as well as for the parent molecule, we have established the crystal structures and performed a detailed analysis of their structural features. The initial screening of the cytotoxic effect on 16 different human cancer and non-cancer derived cell lines revealed that in most cases, the parent compound exhibited a stronger cytotoxic effect than new derivatives, except for two cell lines: HEK 293T (derived from a normal embryonic kidney, that expresses a mutant version of SV40 large T antigen) and MCF7 (breast adenocarcinoma). Two independent studies on the inhibition of PDE5 activity, based on both pure enzyme assay and modulation of the release of nitric oxide from platelets under the influence of tadalafil and its analogues revealed that, unlike a reference compound that showed strong PDE5 inhibitory activity, the newly obtained compounds did not have a noticeable effect on PDE5 activity in the range of concentrations tested. Finally, we performed an investigation of the toxicological effect of synthesized compounds on Caenorhabditis elegans in the highest applied concentration of 6a,b and 7a,b (160 µM) and did not find any effect that would suggest disturbance to the life cycle of Caenorhabditis elegans. The lack of toxicity observed in Caenorhabditis elegans and enhanced, strengthened selectivity and activity toward the MCF7 cell line made 7a,b good leading structures for further structure activity optimization and makes 7a,b a reasonable starting point for the search of new, selective cytotoxic agents.


Assuntos
Caenorhabditis elegans/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Inibidores da Fosfodiesterase 5 , Piperazinas , Tadalafila , Animais , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Células MCF-7 , Inibidores da Fosfodiesterase 5/síntese química , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/síntese química , Piperazinas/química , Piperazinas/farmacologia , Tadalafila/análogos & derivados , Tadalafila/síntese química , Tadalafila/química , Tadalafila/farmacologia
7.
Plant Cell ; 29(6): 1184-1195, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28522546

RESUMO

When plant-pathogenic oomycetes infect their hosts, they employ a large arsenal of effector proteins to establish a successful infection. Some effector proteins are secreted and are destined to be translocated and function inside host cells. The largest group of translocated proteins from oomycetes is the RxLR effectors, defined by their conserved N-terminal Arg-Xaa-Leu-Arg (RxLR) motif. However, the precise role of this motif in the host cell translocation process is unclear. Here, detailed biochemical studies of the RxLR effector AVR3a from the potato pathogen Phytophthora infestans are presented. Mass spectrometric analysis revealed that the RxLR sequence of native AVR3a is cleaved off prior to secretion by the pathogen and the N terminus of the mature effector was found likely to be acetylated. High-resolution NMR structure analysis of AVR3a indicates that the RxLR motif is well accessible to potential processing enzymes. Processing and modification of AVR3a is to some extent similar to events occurring with the export element (PEXEL) found in malaria effector proteins from Plasmodium falciparum These findings imply a role for the RxLR motif in the secretion of AVR3a by the pathogen, rather than a direct role in the host cell entry process itself.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Phytophthora infestans/metabolismo , Phytophthora infestans/patogenicidade , Solanum tuberosum/microbiologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Proteínas Fúngicas/genética , Espectrometria de Massas , Phytophthora infestans/genética
8.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276669

RESUMO

The Aß4-42 peptide is a major beta-amyloid species in the human brain, forming toxic aggregates related to Alzheimer's Disease. It also strongly chelates Cu(II) at the N-terminal Phe-Arg-His ATCUN motif, as demonstrated in Aß4-16 and Aß4-9 model peptides. The resulting complex resists ROS generation and exchange processes and may help protect synapses from copper-related oxidative damage. Structural characterization of Cu(II)Aß4-x complexes by NMR would help elucidate their biological function, but is precluded by Cu(II) paramagneticism. Instead we used an isostructural diamagnetic Pd(II)-Aß4-16 complex as a model. To avoid a kinetic trapping of Pd(II) in an inappropriate transient structure, we designed an appropriate pH-dependent synthetic procedure for ATCUN Pd(II)Aß4-16, controlled by CD, fluorescence and ESI-MS. Its assignments and structure at pH 6.5 were obtained by TOCSY, NOESY, ROESY, 1H-13C HSQC and 1H-15N HSQC NMR experiments, for natural abundance 13C and 15N isotopes, aided by corresponding experiments for Pd(II)-Phe-Arg-His. The square-planar Pd(II)-ATCUN coordination was confirmed, with the rest of the peptide mostly unstructured. The diffusion rates of Aß4-16, Pd(II)-Aß4-16 and their mixture determined using PGSE-NMR experiment suggested that the Pd(II) complex forms a supramolecular assembly with the apopeptide. These results confirm that Pd(II) substitution enables NMR studies of structural aspects of Cu(II)-Aß complexes.


Assuntos
Peptídeos beta-Amiloides/química , Cátions/química , Complexos de Coordenação/química , Cobre/química , Paládio/química , Motivos de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Complexos de Coordenação/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Modelos Teóricos , Conformação Molecular , Paládio/metabolismo , Soluções , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722282

RESUMO

FLICE-associated huge protein (FLASH), Yin Yang 1-Associated Protein-Related Protein (YARP) and Nuclear Protein, Ataxia-Telangiectasia Locus (NPAT) localize to discrete nuclear structures called histone locus bodies (HLBs) where they control various steps in histone gene expression. Near the C-terminus, FLASH and YARP contain a highly homologous domain that interacts with the C-terminal region of NPAT. Structural aspects of the FLASH-NPAT and YARP-NPAT complexes and their role in histone gene expression remain largely unknown. In this study, we used multidimensional NMR spectroscopy and in silico modeling to analyze the C-terminal domain in FLASH and YARP in an unbound form and in a complex with the last 31 amino acids of NPAT. Our results demonstrate that FLASH and YARP domains share the same fold of a triple α -helical bundle that resembles the DNA binding domain of Myb transcriptional factors and the SANT domain found in chromatin-modifying and remodeling complexes. The NPAT peptide contains a single α -helix that makes multiple contacts with α -helices I and III of the FLASH and YARP domains. Surprisingly, in spite of sharing a significant amino acid similarity, each domain likely binds NPAT using a unique network of interactions, yielding two distinct complexes. In silico modeling suggests that both complexes are structurally compatible with DNA binding, raising the possibility that they may function in identifying specific sequences within histone gene clusters, hence initiating the assembly of HLBs and regulating histone gene expression during cell cycle progression.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas de Ligação ao Cálcio/química , Proteínas de Ciclo Celular/química , Proteínas Correpressoras/química , Simulação por Computador , Proteínas de Ligação a DNA/química , Espectroscopia de Ressonância Magnética , Complexos Multiproteicos/química , Humanos , Conformação Proteica em alfa-Hélice , Domínios Proteicos
10.
Int J Mol Sci ; 21(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963646

RESUMO

Immune checkpoints are crucial in the maintenance of antitumor immune responses. The activation or blockade of immune checkpoints is dependent on the interactions between receptors and ligands; such interactions can provide inhibitory or stimulatory signals, including the enhancement or suppression of T-cell proliferation, differentiation, and/or cytokine secretion. B-and T-lymphocyte attenuator (BTLA) is a lymphoid-specific cell surface receptor which is present on T-cells and interacts with herpes virus entry mediator (HVEM), which is present on tumor cells. The binding of HVEM to BTLA triggers an inhibitory signal which attenuates the immune response. This feature is interesting for studying the molecular interactions between HVEM and BTLA, as they may be targeted for novel immunotherapies. This work was based on the crystal structure of the BTLA/HVEM complex showing that BTLA binds the N-terminal cysteine-rich domain of HVEM. We investigated the amino acid sequence of HVEM and used molecular modeling methods to develop inhibitors of the BTLA/HVEM interaction. We synthesized novel compounds and determined their ability to interact with the BTLA protein and inhibit the formation of the BTLA/HVEM complex. Our results suggest that the HVEM (14-39) peptide is a potent inhibitor of the formation of the BTLA/HVEM protein complex.


Assuntos
Dissulfetos/química , Peptídeos/farmacologia , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Receptores Imunológicos/química , Membro 14 de Receptores do Fator de Necrose Tumoral/química
11.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454948

RESUMO

The transmembrane (TM) proteins are gateways for molecular transport across the cell membrane that are often selected as potential targets for drug design. The bilitranslocase (BTL) protein facilitates the uptake of various anions, such as bilirubin, from the blood into the liver cells. As previously established, there are four hydrophobic transmembrane segments (TM1-TM4), which constitute the structure of the transmembrane channel of the BTL protein. In our previous studies, the 3D high-resolution structure of the TM2 and TM3 transmembrane fragments of the BTL in sodium dodecyl sulfate (SDS) micellar media were solved using Nuclear Magnetic Resonance (NMR) spectroscopy and molecular dynamics simulations (MD). The high-resolution 3D structure of the fourth transmembrane region (TM4) of the BTL was evaluated using NMR spectroscopy in two different micellar media, anionic SDS and zwitterionic DPC (dodecylphosphocholine). The presented experimental data revealed the existence of an α -helical conformation in the central part of the TM4 in both micellar media. In the case of SDS surfactant, the α -helical conformation is observed for the Pro258-Asn269 region. The use of the zwitterionic DPC micelle leads to the formation of an amphipathic α -helix, which is characterized by the extension of the central α -helix in the TM4 fragment to Phe257-Thr271. The complex character of the dynamic processes in the TM4 peptide within both surfactants was analyzed based on the relaxation data acquired on 15 N and 31 P isotopes. Contrary to previously published and present observations in the SDS micelle, the zwitterionic DPC environment leads to intensive low-frequency molecular dynamic processes in the TM4 fragment.


Assuntos
Ceruloplasmina/química , Proteínas de Membrana/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Ceruloplasmina/metabolismo , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Micelas , Peptídeos/química , Peptídeos/metabolismo , Relação Estrutura-Atividade
12.
J Struct Biol ; 185(1): 69-78, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24211821

RESUMO

We report a high resolution NMR structure and (15)N relaxation studies of the first catalytic cysteine half-domain (FCCH) of the mouse ubiquitin-activating enzyme E1, together with interaction studies of FCCH and the other catalytic E1 subdomain - SCCH (second catalytic cysteine half-domain). In solution, mouse FCCH forms a well-defined six-stranded antiparallel ß-barrel structure, a common fold for many proteins with a variety of cellular functions. (15)N relaxation data reveal FCCH complex backbone dynamics and indicate which residues experience slow intramolecular motions. Some of these residues make contacts with the polar face of ubiquitin in the co-crystal structure of yeast E1 and ubiquitin. However, the titration of FCCH with ubiquitin does not show any visible chemical shift changes in the 2D (1)H/(15)N HSQC spectra of the FCCH. The 2D (1)H/(15)N HSQC experiments performed both for each catalytic half-domain individually and for their equimolar mixture in the milimolar concentration range display no detectable chemical shift perturbation, suggesting a lack of interaction between the two subdomains unless they are covalently linked via the adenylation domain.


Assuntos
Enzimas Ativadoras de Ubiquitina/química , Animais , Catálise , Cisteína/química , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína
13.
Biochim Biophys Acta ; 1828(11): 2609-19, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23774522

RESUMO

Membrane proteins represent about a third of the gene products in most organisms, as revealed by the genome sequencing projects. They account for up to two thirds of known drugable targets, which emphasizes their critical pharmaceutical importance. Here we present a study on bilitranslocase (BTL) (TCDB 2.A.65), a membrane protein primarily involved in the transport of bilirubin from blood to liver cells. Bilitranslocase has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its 3D structure. However, at present, only a limited knowledge is available beyond the primary structure of BTL. It has been recently confirmed experimentally that one of the four computationally predicted transmembrane segments of bilitranslocase, TM3, has a helical structure with hydrophilic amino acid residues oriented towards one side, which is typical for transmembrane domains of membrane proteins. In this study we confirmed by the use of multidimensional NMR spectroscopy that the second transmembrane segment, TM2, also appears in a form of α-helix. The stability of this polypeptide chain was verified by molecular dynamics (MD) simulation in dipalmitoyl phosphatidyl choline (DPPC) and in sodium dodecyl sulfate (SDS) micelles. The two α-helices, TM2 corroborated in this study, and TM3 confirmed in our previous investigation, provide reasonable building blocks of a potential transmembrane channel for transport of bilirubin and small hydrophilic molecules, including pharmaceutically active compounds.


Assuntos
Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/métodos , Sequência de Aminoácidos , Transporte Biológico Ativo , Ceruloplasmina , Dicroísmo Circular , Micelas , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Conformação Proteica , Dodecilsulfato de Sódio
14.
Eur Biophys J ; 43(12): 581-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25261014

RESUMO

The transient folding of domain 4 of an E. coli RNA polymerase σ7° subunit (rECσ47°) induced by an increasing concentration of 2,2,2-trifluoroethanol (TFE) in an aqueous solution was monitored by means of CD and heteronuclear NMR spectroscopy. NMR data, collected at a 30% TFE, allowed the estimation of the population of a locally folded rECσ47° structure (CSI descriptors) and of local backbone dynamics ((15)N relaxation). The spontaneous organization of the helical regions of the initially unfolded protein into a TFE-induced 3D structure was revealed from structural constraints deduced from (15)N- to (13)C-edited NOESY spectra. In accordance with all the applied criteria, three highly populated α-helical regions, separated by much more flexible fragments, form a transient HLHTH motif resembling those found in PDB structures resolved for homologous proteins. All the data taken together demonstrate that TFE induces a transient native-like structure in the intrinsically disordered protein.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia , Proteínas Intrinsicamente Desordenadas/química , Trifluoretanol/farmacologia , Motivos de Aminoácidos , RNA Polimerases Dirigidas por DNA/metabolismo , Relação Dose-Resposta a Droga , Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Movimento/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos
15.
Biochim Biophys Acta Biomembr ; 1866(3): 184285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237885

RESUMO

A biological membrane is a structure characteristic for various cells and organelles present in almost all living organisms. Even though, it is one of the most common structures in organisms, where it serves crucial functions, a phospholipid bilayer may also take part in pathological processes leading to severe diseases. Research indicates that biological membranes have a profound impact on the pathological processes of oligomerization of amyloid-forming proteins. These processes are a hallmark of amyloid diseases, a group of pathological states involving, e.g., Parkinson's or Alzheimer's disease. Even though amyloidogenic diseases reap the harvest in modern societies, especially in elderly patients, the mechanisms governing the amyloid deposition are not clearly described. Therefore, the presented study focuses on the description of interactions between a model biological membrane (POPG) and one of amyloid forming proteins - human cystatin C. For the purpose of the study molecular dynamics simulations were applied to confirm interactions between the protein and POPG membrane. Next the NMR techniques were used to verify how the data obtained in solution compared to MD simulations and determine fragments of the protein responsible for interactions with POPG. Finally, circular dichroism was used to monitor the changes in secondary structure of the protein and size exclusion chromatography was used to monitor its oligomerization process. Obtained data indicates that the protein interacts with POPG submerging itself into the bilayer with the AS region. However, the presence of POPG bilayer does not significantly affect the structure or oligomerization process of human cystatin C.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Humanos , Idoso , Fosfolipídeos/metabolismo , Bicamadas Lipídicas/química , Proteínas Amiloidogênicas/análise , Proteínas Amiloidogênicas/metabolismo , Cistatina C/análise , Cistatina C/metabolismo , Membrana Celular/metabolismo , Amiloide
16.
FEBS J ; 291(9): 1974-1991, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38349797

RESUMO

Human cystatin C (hCC), a small secretory protein, has gained attention beyond its classical role as a cysteine protease inhibitor owing to its potential involvement in neurodegenerative disorders. This study investigates the interaction between copper(II) ions [Cu(II)] and hCC, specifically targeting histidine residues known to participate in metal binding. Through various analytical techniques, including mutagenesis, circular dichroism, fluorescence assays, gel filtration chromatography, and electron microscopy, we evaluated the impact of Cu(II) ions on the structure and oligomerization of hCC. The results show that Cu(II) does not influence the secondary and tertiary structure of the studied hCC variants but affects their stability. To explore the Cu(II)-binding site, nuclear magnetic resonance (NMR) and X-ray studies were conducted. NMR experiments revealed notable changes in signal intensities and linewidths within the region 86His-Asp-Gln-Pro-His90, suggesting its involvement in Cu(II) coordination. Both histidine residues from this fragment were found to serve as a primary anchor of Cu(II) in solution, depending on the structural context and the presence of other Cu(II)-binding agents. The presence of Cu(II) led to significant destabilization and altered thermal stability of the wild-type and H90A variant, confirming differentiation between His residues in Cu(II) binding. In conclusion, this study provides valuable insights into the interaction between Cu(II) and hCC, elucidating the impact of copper ions on protein stability and identifying potential Cu(II)-binding residues. Understanding these interactions enhances our knowledge of the role of copper in neurodegenerative disorders and may facilitate the development of therapeutic strategies targeting copper-mediated processes in protein aggregation and associated pathologies.


Assuntos
Cobre , Cistatina C , Ligação Proteica , Multimerização Proteica , Cobre/metabolismo , Cobre/química , Humanos , Cistatina C/química , Cistatina C/metabolismo , Cistatina C/genética , Sítios de Ligação , Modelos Moleculares , Cristalografia por Raios X , Estabilidade Proteica , Dicroísmo Circular , Histidina/química , Histidina/metabolismo , Conformação Proteica
17.
J Biol Chem ; 287(48): 40457-70, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22989881

RESUMO

BACKGROUND: S100A1 protein is a proposed target of molecule-guided therapy for heart failure. RESULTS: S-Nitrosylation of S100A1 is present in cells, increases Ca(2+) binding, and tunes the overall protein conformation. CONCLUSION: Thiol-aromatic molecular switch is responsible for NO-related modification of S100A1 properties. SIGNIFICANCE: Post-translational S-nitrosylation may provide functional diversity and specificity to S100A1 and other S100 protein family members. S100A1 is a member of the Ca(2+)-binding S100 protein family. It is expressed in brain and heart tissue, where it plays a crucial role as a modulator of Ca(2+) homeostasis, energy metabolism, neurotransmitter release, and contractile performance. Biological effects of S100A1 have been attributed to its direct interaction with a variety of target proteins. The (patho)physiological relevance of S100A1 makes it an important molecular target for future therapeutic intervention. S-Nitrosylation is a post-translational modification of proteins, which plays a role in cellular signal transduction under physiological and pathological conditions. In this study, we confirmed that S100A1 protein is endogenously modified by Cys(85) S-nitrosylation in PC12 cells, which are a well established model system for studying S100A1 function. We used isothermal calorimetry to show that S-nitrosylation facilitates the formation of Ca(2+)-loaded S100A1 at physiological ionic strength conditions. To establish the unique influence of the S-nitroso group, our study describes high resolution three-dimensional structures of human apo-S100A1 protein with the Cys(85) thiol group in reduced and S-nitrosylated states. Solution structures of the proteins are based on NMR data obtained at physiological ionic strength. Comparative analysis shows that S-nitrosylation fine tunes the overall architecture of S100A1 protein. Although the typical S100 protein intersubunit four-helix bundle is conserved upon S-nitrosylation, the conformation of S100A1 protein is reorganized at the sites most important for target recognition (i.e. the C-terminal helix and the linker connecting two EF-hand domains). In summary, this study discloses cysteine S-nitrosylation as a new factor responsible for increasing functional diversity of S100A1 and helps explain the role of S100A1 as a Ca(2+) signal transmitter sensitive to NO/redox equilibrium within cells.


Assuntos
Óxido Nítrico/metabolismo , Proteínas S100/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Humanos , Cinética , Células PC12 , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Ratos , Proteínas S100/química , Proteínas S100/genética
18.
Biochem J ; 446(2): 243-51, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22676969

RESUMO

The most common form of prion disease in humans is sCJD (sporadic Creutzfeldt-Jakob disease). The naturally occurring E219K polymorphism in the HuPrP (human prion protein) is considered to protect against sCJD. To gain insight into the structural basis of its protective influence we have determined the NMR structure of recombinant HuPrP (residues 90-231) carrying the E219K polymorphism. The structure of the HuPrP(E219K) protein consists of a disordered N-terminal tail (residues 90-124) and a well-structured C-terminal segment (residues 125-231) containing three α-helices and two short antiparallel ß-strands. Comparison of NMR structures of the wild-type and HuPrPs with pathological mutations under identical experimental conditions revealed that, although the global architecture of the protein remains intact, replacement of Glu²¹9 with a lysine residue introduces significant local structural changes. The structural findings of the present study suggest that the protective influence of the E219K polymorphism is due to the alteration of surface charge distribution, in addition to subtle structural rearrangements localized within the epitopes critical for prion conversion.


Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Polimorfismo Genético , Príons/química , Príons/genética , Alelos , Substituição de Aminoácidos , Síndrome de Creutzfeldt-Jakob/metabolismo , Epitopos , Predisposição Genética para Doença , Heterozigoto , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Príons/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Propriedades de Superfície
19.
Biochim Biophys Acta Biomembr ; 1865(8): 184200, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37517559

RESUMO

Herpes simplex virus 1 (HSV-1) is a well-studied herpesvirus that causes various human diseases. Like other herpesviruses, HSV-1 produces the transmembrane glycoprotein N (gN/UL49.5 protein), which has been extensively studied, but its function in HSV-1 remains largely unknown. The amino-acid sequences and lengths of UL49.5 proteins differ between herpesvirus species. It is, therefore, crucial to determine whether and to what extent the spatial structure of UL49.5 orthologs that are transporter associated with antigen processing (TAP) inhibitors (i.e., of bovine herpesvirus 1; BoHV-1) differ from that of non-TAP inhibitors (i.e., of HSV-1). Our study aimed to examine the 3D structure of the HSV-1-encoded UL49.5 protein in an advanced model of the endoplasmic reticulum (ER) membrane using circular dichroism, 2D nuclear magnetic resonance, and multiple-microsecond all-atom molecular dynamics simulations in an ER membrane mimetic environment. According to our findings, the N-terminus of the HSV-1-encoded UL49.5 adopts a highly flexible, unordered structure in the extracellular part due to the presence of a large number of proline and glycine residues. In contrast to the BoHV-1-encoded homolog, the transmembrane region of the HSV-1-encoded UL49.5 is formed by a single long transmembrane α-helix, rather than two helices oriented perpendicularly, while the cytoplasmic part of the protein (C-terminus) has a short unordered structure. Our findings provide valuable experimental structural information on the HSV-1-encoded UL49.5 protein and offer, based on the obtained structure, insight into its lack of biological activity in inhibiting the TAP-dependent antigen presentation pathway.


Assuntos
Herpes Simples , Herpesviridae , Herpesvirus Humano 1 , Humanos , Apresentação de Antígeno , Herpesvirus Humano 1/metabolismo , Proteínas do Envelope Viral/química , Proteínas de Membrana Transportadoras/metabolismo , Herpesviridae/metabolismo
20.
J Biol Chem ; 286(8): 6554-65, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21138844

RESUMO

Parvulins are a group of peptidyl-prolyl isomerases (PPIases) responsible for important biological processes in all kingdoms of life. The PinA protein from the psychrophilic archaeon Cenarchaeum symbiosum is a parvulin-like PPIase. Due to its striking similarity to the human parvulins Pin1 and Par14, PinA constitutes an interesting subject for structural and functional studies. Here, we present the first high resolution NMR structure of an archaeal parvulin, PinA, based on 1798 conformational restraints. Structure calculation yields an ensemble of 20 convergent low energy structures with a backbone r.m.s.d. value of 0.6 Å within the secondary structure elements. The overall fold of PinA comprises the ß-α(3)-ß-α-ß(2) fold typical for all parvulin structures known so far, but with helix III being a short 3(10)-helix. A detailed comparison of this high resolution structure of the first archaeal PinA protein with bacterial and eukaryotic parvulin PPIase structures reveals an atypically large catalytic binding site. This feature provides an explanation for cold-adapted protein function. Moreover, the residues in and around 3(10)-helix III exhibit strong intramolecular dynamics on a microsecond to millisecond timescale and display structural heterogeneity within the NMR ensemble. A putative peptide ligand was found for PinA by phage display and was used for (1)H-(15)N-HSQC titrations. Again, the flexible region around 3(10)-helix III as well as residues of the peptide binding pocket showed the strongest chemical shift perturbations upon peptide binding. The local flexibility of this region also was modulated by ligand binding. A glycine and two positively charged residues are conserved in most parvulin proteins in this flexible loop region, which may be of general functional importance for parvulin-type PPIases.


Assuntos
Proteínas Arqueais/química , Crenarchaeota/enzimologia , Peptidilprolil Isomerase/química , Dobramento de Proteína , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA