Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(28): 10746-10757, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31076509

RESUMO

In eukaryotes, ribosome assembly is a rate-limiting step in ribosomal biogenesis that takes place in a distinctive subnuclear organelle, the nucleolus. How ribosomes get assembled at the nucleolar site by forming initial preribosomal complexes remains poorly characterized. In this study, using several human and murine cell lines, we developed a method for isolation of native mammalian preribosomal complexes by lysing cell nuclei through mild sonication. A sucrose gradient fractionation of the nuclear lysate resolved several ribonucleoprotein (RNP) complexes containing rRNAs and ribosomal proteins. Characterization of the RNP complexes with MS-based protein identification and Northern blotting-based rRNA detection approaches identified two types of preribosomes we named here as intermediate preribosomes (IPRibs) and composed preribosome (CPRib). IPRib complexes comprised large preribosomes (105S to 125S in size) containing the rRNA modification factors and premature rRNAs. We further observed that a distinctive CPRib complex consists of an 85S preribosome assembled with mature rRNAs and a ribosomal biogenesis factor, Ly1 antibody-reactive (LYAR), that does not associate with premature rRNAs and rRNA modification factors. rRNA-labeling experiments uncovered that IPRib assembly precedes CPRib complex formation. We also found that formation of the preribosomal complexes is nutrient-dependent because the abundances of IPRib and CPRib decreased substantially when cells were either deprived of amino acids or exposed to an mTOR kinase inhibitor. These findings indicate that preribosomes form via dynamic and nutrient-dependent processing events and progress from an intermediate to a composed state during ribosome maturation.


Assuntos
Precursores de RNA/metabolismo , Ribossomos/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Acetiltransferases N-Terminal/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
2.
J Biol Chem ; 288(38): 27019-27030, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23928304

RESUMO

Nutrients are essential for living organisms because they fuel biological processes in cells. Cells monitor nutrient abundance and coordinate a ratio of anabolic and catabolic reactions. Mechanistic target of rapamycin (mTOR) signaling is the essential nutrient-sensing pathway that controls anabolic processes in cells. The central component of this pathway is mTOR, a highly conserved and essential protein kinase that exists in two distinct functional complexes. The nutrient-sensitive mTOR complex 1 (mTORC1) controls cell growth and cell size by phosphorylation of the regulators of protein synthesis S6K1 and 4EBP1, whereas its second complex, mTORC2, regulates cell proliferation by functioning as the regulatory kinase of Akt and other members of the AGC kinase family. The regulation of mTORC2 remains poorly characterized. Our study shows that the cellular ATP balance controls a basal kinase activity of mTORC2 that maintains the integrity of mTORC2 and phosphorylation of Akt on the turn motif Thr-450 site. We found that mTOR stabilizes SIN1 by phosphorylation of its hydrophobic and conserved Ser-260 site to maintain the integrity of mTORC2. The optimal kinase activity of mTORC2 requires a concentration of ATP above 1.2 mM and makes this kinase complex highly sensitive to ATP depletion. We found that not amino acid but glucose deprivation of cells or acute ATP depletion prevented the mTOR-dependent phosphorylation of SIN1 on Ser-260 and Akt on Thr-450. In a low glucose medium, the cells carrying a substitution of SIN1 with its phosphomimetic mutant show an increased rate of cell proliferation related to a higher abundance of mTORC2 and phosphorylation of Akt. Thus, the homeostatic ATP sensor mTOR controls the integrity of mTORC2 and phosphorylation of Akt on the turn motif site.


Assuntos
Trifosfato de Adenosina/metabolismo , Proliferação de Células , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/genética , Motivos de Aminoácidos , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/genética , Mutação , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética
3.
Front Endocrinol (Lausanne) ; 12: 799711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046899

RESUMO

Existing animal models with rod-dominant retinas have shown that hyperglycemia injures neurons, but it is not yet clearly understood how blue cone photoreceptors and retinal ganglion cells (RGCs) deteriorate in patients because of compromised insulin tolerance. In contrast, northern tree shrews (Tupaia Belangeri), one of the closest living relatives of primates, have a cone-dominant retina with short wave sensitivity (SWS) and long wave sensitivity (LWS) cones. Therefore, we injected animals with a single streptozotocin dose (175 mg/kg i.p.) to investigate whether sustained hyperglycemia models the features of human diabetic retinopathy (DR). We used the photopic electroretinogram (ERG) to measure the amplitudes of A and B waves and the photopic negative responses (PhNR) to evaluate cone and RGC function. Retinal flat mounts were prepared for immunohistochemical analysis to count the numbers of neurons with antibodies against cone opsins and RGC specific BRN3a proteins. The levels of the proteins TRIB3, ISR-1, and p-AKT/p-mTOR were measured with western blot. The results demonstrated that tree shrews manifested sustained hyperglycemia leading to a slight but significant loss of SWS cones (12%) and RGCs (20%) 16 weeks after streptozotocin injection. The loss of BRN3a-positive RGCs was also reflected by a 30% decline in BRN3a protein expression. These were accompanied by reduced ERG amplitudes and PhNRs. Importantly, the diabetic retinas demonstrated increased expression of TRIB3 and level of p-AKT/p-mTOR axis but reduced level of IRS-1 protein. Therefore, a new non-primate model of DR with SWS cone and RGC dysfunction lays the foundation to better understand retinal pathophysiology at the molecular level and opens an avenue for improving the research on the treatment of human eye diseases.


Assuntos
Retinopatia Diabética/fisiopatologia , Modelos Animais de Doenças , Tupaiidae/fisiologia , Animais , Retinopatia Diabética/complicações , Retinopatia Diabética/metabolismo , Eletrorretinografia , Hiperglicemia/complicações , Hiperglicemia/fisiopatologia , Masculino , Transdução de Sinais
4.
Virus Res ; 294: 198291, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33388393

RESUMO

Yellow fever virus, the prototype in the genus Flavivirus, was used to develop viruses in which the nonstructural protein NS1 is genetically fused to GFP in the context of viruses capable of autonomous replication. The GFP-tagging of NS1 at the amino-terminus appeared possible despite the presence of a small and functionally important domain at the NS1's amino-terminus which can be distorted by such fusing. GFP-tagged NS1 viruses were rescued from DNA-launched molecular clones. The initially produced GFP-tagged NS1 virus was capable of only poor replication. Sequential passages of the virus in cell cultures resulted in the appearance of mutations in GFP, NS4A, NS4B and NS5. The mutations which change amino acid sequences of GFP, NS4A and NS5 have the adaptive effect on the replication of GFP-tagged NS1 viruses. The pattern of GFP-fluorescence indicates that the GFP-NS1 fusion protein is produced into the endoplasmic reticulum. The intracellular GFP-NS1 fusion protein colocalizes with dsRNA. The discovered forms of extracellular GFP-NS1 possibly include tetramers and hexamers.


Assuntos
Flavivirus , Vírus da Febre Amarela , Sequência de Aminoácidos , Flavivirus/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/metabolismo
5.
Oncotarget ; 5(20): 9577-93, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25294810

RESUMO

Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins.


Assuntos
Núcleo Celular/metabolismo , Neoplasias/metabolismo , Proteínas Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/metabolismo , Neoplasias/enzimologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA