RESUMO
Improvement in the performance of perovskite solar cells (PSC) and dye-sensitized solar cells (DSSC) upon modifications of mesoporous titania layers has been studied. For PSC with triple cation perovskite (FA0.76 MA0.19 Cs0.05 Pb (I0.81 Br0.19)3) about 40% higher photocurrent (up to â¼24 mA cm-2) was found for more homogenous, made of larger particles (30 nm) and thinner (150-200 nm) titania layer. For DSSC (both with liquid cobalt-based electrolyte as well as with solid state hole transporter - spiro-OMeTAD), a greater dye loading, rise in photovoltage, and the enhancement in relative photocurrent were observed for the cells prepared from the diluted titania paste (2 : 1 w/w ratio) with respect to those prepared from undiluted one. The impact of these improvements in titania layers on charge transfer dynamics in the complete solar cells as well as in pristine TiO2 layers was investigated by femtosecond transient absorption. Shorter photocarriers lifetime in perovskite material observed in better PSC, indicated that faster electron transfer at the titania interface was responsible for the higher photocurrent. Moreover, the photoinduced changes close to TiO2 interface were revealed in better PSC, which may indicate that in the efficient devices halide segregation takes place in perovskite material. In liquid DSSC, the fast component of unwanted recombination was slower in the samples with the diluted titania paste than in those made with undiluted ones. In solid state DSSC, hole injection from MK2 dye to spiro-OMeTAD takes place on the very fast ps time scale (comparable to that of electron injection) and the evidence of better penetration of spiro-OMeTAD into thinner and more porous titania layers was provided.
RESUMO
Perovskite solar cells, composed of a mixture of methylammonium (MA) and formamidinium (FA) cations [in the benchmark proportions of (FAPbI3 )0.85 (MAPbBr3 )0.15 ] and titania as an electron-accepting material, are prepared under different conditions, with the objective of finding correlations between the solar cell performance and several important stationary and dynamical parameters of the material. The effects of humidity, oxygen, the use of anti-solvent, and the presence and quality of a mesoporous titania layer are investigated. It is found that an increase in the photocurrent corresponds to a higher content of the desired cubic perovskite phase and to increased long-wavelength absorption of the sample. On the contrary, for poorer-quality cells, additional short-wavelength bands in both absorption and emission spectra are present. Furthermore, a higher photocurrent of the cells is correlated with faster interfacial charge-transfer dynamics. For the highest photocurrent of >20â mA cm-2 , the characteristic times of about 1â µs are observed by electrochemical impedance spectroscopy, and emission half-lifetimes of about 6â ns by time-resolved fluorescence spectroscopy (upon excitation with 420â nm pulses of ≈0.5â mW power). Both first- and second-order rate constants, extracted from the emission measurements, are greater for the cells showing higher photocurrents, probably owing to a more rapid charge injection.
RESUMO
Silica-based materials (SBMs) are widely used in catalysis, photonics, and drug delivery. Their pores and cavities act as hosts of diverse guests ranging from classical dyes to drugs and quantum dots, allowing changes in the photochemical behavior of the confined guests. The heterogeneity of the guest populations as well as the confinement provided by these hosts affect the behavior of the formed hybrid materials. As a consequence, the observed reaction dynamics becomes significantly different and complex. Studying their photobehavior requires advanced laser-based spectroscopy and microscopy techniques as well as computational methods. Thanks to the development of ultrafast (spectroscopy and imaging) tools, we are witnessing an increasing interest of the scientific community to explore the intimate photobehavior of these composites. Here, we review the recent theoretical and ultrafast experimental studies of their photodynamics and discuss the results in comparison to those in homogeneous media. The discussion of the confined dynamics includes solvation and intra- and intermolecular proton-, electron-, and energy transfer events of the guest within the SBMs. Several examples of applications in photocatalysis, (photo)sensors, photonics, photovoltaics, and drug delivery demonstrate the vast potential of the SBMs in modern science and technology.
RESUMO
Standard ruthenium components of dye-sensitized solar cells (sensitizer N719) and dye-sensitized photoelectrochemical cells (sensitizer RuP and water oxidation catalyst RuOEC) are investigated in the same solar cell configuration to compare their photodynamics and charge separation efficiency. The samples are studied on time scales from femtoseconds to seconds by means of transient absorption, time-resolved emission and electrochemical impedance measurements. RuP shows significantly slower electron injection into a mesoporous titania electrode and enhanced fast (sub-ns) electron recombination with respect to those of N719. Moreover, RuOEC is found to be responsible for partial light absorption and electron injection with low efficiency. The obtained results reveal new insights into the reasons for the lower charge separation efficiency in water splitting systems with respect to that in solar cells. The important role of the initial processes occurring at the dye-titania interface within the first nanoseconds in this efficiency is emphasized.
RESUMO
The substitution of iodide electrolytes with cobalt ones has led to the current champion laboratory efficiencies for dye-sensitized solar cells (DSSCs). However, unlike with organic dyes, this strategy does not work with classical ruthenium dyes. Therefore, we compare DSSCs sensitized with a popular Ru dye (N719) using both types of electrolytes by exploring the electron dynamics occurring from sub-ps to seconds. An important limitation in the photocurrent of cobalt-based cells is revealed to be due to electron recombination between titania and oxidized Ru dyes, which is much higher than that in iodide-based cells and occurs on the time scale of tens and hundreds of ps. Electron recombination between titania and the electrolyte, taking place on the millisecond time scale, is responsible for further lowering of the photovoltage and fill factor of cobalt-based cells. Ruthenium dyes also exhibit lower absorption coefficients with respect to their organic counterparts. For this reason, we also investigate the effect of the changes in the titania layer thickness, addition of scattering nanoparticles and modifications in the TiCl4 treatment on DSSC performance.
RESUMO
Record laboratory efficiencies of dye-sensitized solar cells have been recently reported using an alkoxysilyl-anchor dye, ADEKA-1 (over 14 %). In this work we use time-resolved techniques to study the impact of key preparation factors (dye synthesis route, addition of co-adsorbent, use of cobalt-based electrolytes of different redox potential, creation of insulating Al2 O3 layers and molecule capping passivation of the electrode) on the partial charge separation efficiencies in ADEKA-1 solar cells. We have observed that unwanted fast recombination of electrons from titania to the dye, probably associated with the orientation of the dyes on the titania surface, plays a crucial role in the performance of the cells. This recombination, taking place on the sub-ns and ns time scales, is suppressed in the optimized dye synthesis methods and upon addition of the co-adsorbent. Capping treatment significantly reduces the charge recombination between titania and electrolyte, improving the electron lifetime from tens of ms to hundreds of ms, or even to single seconds. Similar increase in electron lifetime is observed for homogenous Al2 O3 over-layers on titania nanoparticles, however, in this case the total solar cells photocurrent is decreased due to smaller electron injection yield from the dye. Our studies should be important for a broader use of very promising silyl-anchor dyes and the further optimization and development of dye-sensitized solar cells.
RESUMO
Time-resolved laser spectroscopy techniques in the time range from femtoseconds to seconds were applied to investigate the charge separation processes in complete dye-sensitized solar cells (DSC) made with iodide/iodine liquid electrolyte and indoline dye D149 interacting with TiO2 or ZnO nanoparticles. The aim of the studies was to explain the differences in the photocurrents of the cells (3-4 times higher for TiO2 than for ZnO ones). Electrochemical impedance spectroscopy and nanosecond flash photolysis studies revealed that the better performance of TiO2 samples is not due to the charge collection and dye regeneration processes. Femtosecond transient absorption results indicated that after first 100 ps the number of photoinduced electrons in the semiconductor is 3 times higher for TiO2 than for ZnO solar cells. Picosecond emission studies showed that the lifetime of the D149 excited state is about 3 times longer for ZnO than for TiO2 samples. Therefore, the results indicate that lower performance of ZnO solar cells is likely due to slower electron injection. The studies show how to correlate the laser spectroscopy methodology with global parameters of the solar cells and should help in better understanding of the behavior of alternative materials for porous electrodes for DSC and related devices.
Assuntos
Corantes/química , Indóis/química , Lasers , Titânio/química , Óxido de Zinco/química , Nanopartículas/química , Tamanho da Partícula , Análise Espectral , Propriedades de Superfície , Fatores de TempoRESUMO
A numerical study of optimal bandgaps of light absorbers in tandem solar cell configurations is presented with the main focus on dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). The limits in efficiency and the expected improvements of tandem structures are investigated as a function of total loss-in-potential (V(L)), incident photon to current efficiency (IPCE) and fill factor (FF) of individual components. It is shown that the optimal absorption onsets are significantly smaller than those derived for multi-junction devices. For example, for double-cell devices the onsets are at around 660 nm and 930 nm for DSSCs with iodide based electrolytes and at around 720 nm and 1100 nm for both DSSCs with cobalt based electrolytes and PSCs. Such configurations can increase the total sunlight conversion efficiency by about 35% in comparison to single-cell devices of the same VL, IPCE and FF. The relevance of such studies for tandem n-p DSSCs and for a proposed new configuration for PSCs is discussed. In particular, it is shown that maximum total losses of 1.7 V for DSSCs and 1.4 V for tandem PSCs are necessary to give any efficiency improvement with respect to the single bandgap device. This means, for example, a tandem n-p DSSC with TiO2 and NiO porous electrodes will hardly work better than the champion single DSSC. A source code of the program used for calculations is also provided.
Assuntos
Compostos de Cálcio/química , Corantes/química , Fontes de Energia Elétrica , Transferência de Energia/efeitos da radiação , Modelos Químicos , Óxidos/química , Energia Solar , Titânio/química , Absorção de Radiação , Compostos de Cálcio/efeitos da radiação , Corantes/efeitos da radiação , Simulação por Computador , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Óxidos/efeitos da radiação , Titânio/efeitos da radiaçãoRESUMO
A complete, functioning dye-sensitized solar cell made of popular indoline D149 sensitizer is studied by means of transient absorption in visible light in the time scale of nanoseconds to seconds. Photocurrent and photovoltage decays are also measured under the same experimental conditions. A local electric field causing a Stark shift of the D149 absorption band is found to strongly influence the transient spectra and kinetics. The presence of electrons in titania has a major contribution to the Stark shift and the effect disappears over many time scales with an average rate of 5 × 10(3) s(-1). This is much slower than the decay of the oxidized dye (2 × 10(6) s(-1)) but, on the other hand, significantly faster than the decay of electrons in titania nanoparticles (3 × 10(2) s(-1) at standard AM1.5 irradiation and open circuit conditions). Possible explanations of this phenomenon are discussed. Electron recombination from the titania conduction band to the oxidized dyes proceeds at an average rate of 2-16 × 10(4) s(-1), depending on the excitation energy density, and does not influence the efficiency of dye regeneration.
RESUMO
This paper reports on the investigations of the synthesized di-(o-hydroxyaryl ketoimine) compound by the steady state absorption and emission techniques as well as picosecond time resolved emission and femtosecond transient absorption methods in different solvents. The results of the experimental observation have been supported by the theoretical DFT and TD-DFT calculations. The theoretical data have revealed the completed influence of the environmental polarity on particular conformers of studied compound. Dependencies between the activation rate constant and polarizability function as well as Kamlet-Abbond-Taft hydrogen-bonding parameter have been obtained in different solvent. The mechanism of photodynamic changes of di-(o-hydroxyaryl ketoimine) is presented.
RESUMO
A model of charge population decay upon ultrafast optical pulse excitation in complete, working perovskite solar cells is proposed. The equation, including charge injections (extractions) from perovskite to contact materials, charge diffusion, and charge recombination via first-, second-, and third-order processes, is solved using numerical simulations. Results of simulations are positively verified by broadband transient absorption results of mixed halide, triple-cation perovskite (FA0.76MA0.19Cs0.05Pb(I0.81Br0.19)3). The combined analytical and experimental findings reveal the best approaches for the proper determination of the crucial parameters that govern charge transfer dynamics in perovskite solar cells on picosecond and single nanosecond time scales. Measurements from both electron and hole transporting layer sides under different applied bias potentials (zero and close to open circuit potential) and different pump fluence (especially below 5 µJ/cm2), followed by fitting of parameters using numerical modeling, are proposed as the optimal methodology for describing the processes taking place in efficient devices.
RESUMO
Formamidinium lead iodide (FAPbI3)-based perovskite solar cells have gained immense popularity over the last few years within the perovskite research community due to their incredible opto-electronic properties and the record power conversion efficiencies (PCEs) achieved by the solar cells. However, FAPbI3 is vulnerable to phase transitions even at room temperature, which cause structural instability and eventual device failure during operation. We performed post-treatment of the FAPbI3 surface with octyl ammonium iodide (OAI) in order to stabilize the active phase and preserve the crystal structure of FAPbI3. The formation of a 2D perovskite at the interface depends on the stoichiometry of the precursor. By optimizing the precursor stoichiometry and the concentration of OAI, we observe a synergistic effect, which results in improved power conversion efficiencies, reaching the best values of 22% on a glass substrate. Using physical and detailed optical analysis, we verify the presence of the 2D layer on the top of the 3D surface of the perovskite film.
RESUMO
One-dimensional (1D) organic-inorganic hybrid perovskite nanowires (NWs) with well-defined structures possess superior optical and electrical properties for optoelectronic applications. However, most of the perovskite NWs are synthesized in air, which makes the NWs susceptible to water vapor, resulting in large amounts of grain boundaries or surface defects. Here, a template-assisted antisolvent crystallization (TAAC) method is designed to fabricate CH3NH3PbBr3 NWs and arrays. It is found that the as-synthesized NW array has designable shapes, low crystal defects, and ordered alignment, which is attributed to the sequestration of water and oxygen in air by the introduction of acetonitrile vapor. The photodetector based on the NWs exhibits an excellent response to light illumination. Under the illumination of a 532 nm laser with 0.1 µW and a bias of -1 V, the responsivity and detectivity of the device reach 1.55 A/W and 1.21 × 1012 Jones, respectively. The transient absorption spectrum (TAS) shows a distinct ground state bleaching signal only at 527 nm, which corresponds to the absorption peak induced by the interband transition of CH3NH3PbBr3. Narrow absorption peaks (a few nanometers) indicate that the energy-level structures of CH3NH3PbBr3 NWs only have a few impurity-level-induced transitions leading to additional optical loss. This work provides an effective and simple strategy to achieve high-quality CH3NH3PbBr3 NWs, which exhibit potential application in photodetection.
RESUMO
In this study, we report on the effects of solvent viscosity and polarity on the photochromic salicylaldehyde azine (SAA) molecule by examining the steady-state and UV-visible absorption results in the time scale from nanoseconds to hours, in solution and in a polymer film. For the neutral structure, the viscosity strongly affects the lifetime of the photochromic (trans-keto) tautomer by suppressing the second order quenching process, and thus increasing the photochrome lifetimes in highly viscous solvents to 500 µs in polar triacetine, and to 65 µs in non-polar squalane. Trapping SAA in a non-polar polymer film (polyethylene) results in further elongation of the photochromic lifetime (700 µs) by one order of magnitude (with respect to that in squalane), due to the retardation of the intramolecular back-isomerization. Another species, living significantly longer and absorbing more in the UV comparing to the photochrome, was identified as the syn-enol tautomer. The lifetime of this tautomer, created in a competitive mechanism to the photochrome creation, is much longer in non-polar solvents (hundreds of minutes) than in polar ones (tens of minutes), opposite to the trend observed for the photochrome. For the SAA anion, the transient living on the ns-µs time scale can be exclusively assigned to the triplet state, which is not observed for the neutral form at room temperature.
RESUMO
Time-resolved emission and absorption spectroscopy are used to study the photoinduced dynamics of forward and back electron transfer processes taking place between a recently synthesized series of donor-(π-spacer)-acceptor organic dyes and semiconductor films. Results are obtained for vertically oriented titania nanotube arrays (inner diameters 36 nm and 70 nm), standard titania nanoparticles (25 nm diameter) and, as a reference, alumina nanoparticle (13 nm diameter) films. The studied dyes contain a triphenylamine group as an electron donor, cyanoacrylic acid part as an electron acceptor, and differ by the substituents in a spacer group that causes a shift of its absorption spectra. Despite a red-shift of the dye absorption band resulting in an improved response to the solar spectrum, smaller electron injection rates and smaller extinction coefficients result in reduced dye sensitized solar cell (DSSC) conversion efficiencies. For the most efficient dye, TPC1, electron injection from the hot locally excited state to titania on a time scale of about 100 fs is suggested, while from the relaxed charge transfer state it proceeds in a non-exponential way with time constants from 1 ps to 50 ps. Our results imply that the latter process involves the trap states below the conduction band edge (or the sub-bandgap tail of the acceptor states), localized close to the dye radical cation, and is accompanied by fast electron recombination to the parent dye's ground state. This process should limit the efficiency of DSSCs made using these types of organic dyes. The residual, slower recombination can be described by a stretched exponential decay with a characteristic time of 0.5 µs and a dispersion parameter of 0.33. Both the electron injection and back electron transfer dynamics are similar in titania nanoparticles and nanotubes. Variations between the two film types are only found in the time resolved emission transients, which are explained in terms of the difference in local electric fields affecting the position of the emission bands.
RESUMO
Co-sensitization of two or more light-absorbing compounds on a TiO2 surface has recently become one of the most successful strategies in the development of dye-sensitized solar cells (DSSCs). The specific structure of the dyes for DSSCs implies that they can partly exist in anionic forms in popular solvents used for sensitization. Our study concerns the above two issues being analyzed in detail using the example of the popular carbazole (MK2) and indoline (D205) dyes, studied by stationary absorption and emission, femtosecond transient absorption (in complete cells and in the solutions), current-voltage measurements, DFT and TD-DFT theoretical calculations. After the addition of D205 to DSSC with MK2, the fill factor of the cells was improved, and the electron recombination between TiO2 and the dyes was blocked (observed on sub-nanosecond time scales). Thus, the active co-adsorbent can take the role of the typically used passive additive, like chenodeoxycholic acid. Evidence of the concentration-dependent equilibrium between neutral and anionic forms of dyes with different lifetimes was found in acetonitrile solutions (the best for sensitization), while in ethanol solution the dominant form was the anion (worse for sensitization). Our findings should help in better understanding the operation and optimization of DSSC.
RESUMO
We report on femtosecond-nanosecond (fs-ns) studies of the triphenylamine organic dye (TPC1) interacting with titania nanoparticles of different sizes, nanotubes and nanorods. We used time-resolved emission and absorption spectroscopy to measure the photoinduced dynamics of forward and back electron transfer processes taking place in TPC1-titania complexes in acetonitrile (ACN) and dichloromethane (DCM) solutions. We observed that the electron injection from the dye to titania occurs in a multi-exponential way with the main contribution of 100 fs from the hot excited charge-transfer state of anchored TPC1. This process competes with the relaxation of the excited state, mainly governed by solvation, that takes place with average time constants of 400 fs in ACN and 1.3 ps in DCM solutions. A minor contribution to the electron injection process takes place with longer time constants of about 1-10 ps from the relaxed excited state of TPC1. The latter times and their contribution do not depend on the size of the nanoparticles, but are substantially smaller in the case of nanotubes (1-3 ps), probably due to the caging effect. The contribution is also smaller in DCM than in ACN. The efficient back recombination takes place also in a multi-exponential way with times of 1 ps, 15 ps and 1 ns, and only 20-30% of the initial injected electrons in the conduction band are left within the first 1 ns after excitation. The faster recombination rates are suggested due to those originating from the free electrons in the conduction band of titania or the electrons in the shallow trap states, while the slower recombination is due to the electrons in the deep trap states. The results reported here should be relevant to a better understanding of the photobehaviour of an organic dye with promising potential for use in solar cells. They should also help to determine the important factors that limit the efficiency of solar cells based on the triphenylamine-based dyes for solar energy conversion.
RESUMO
The photophysics of N,N'-bis(salicylidene)-p-phenylenediamine (BSP) is analyzed both theoretically and experimentally. The alternative intramolecular proton-transfer reactions lead to three different tautomers. We performed DFT and TDDFT calculations to analyze the topography of the reactions connecting the three tautomers. Deactivation paths through a Conical Intersection (CI) region are also analyzed to explain the low fluorescence quantum yield of the phototautomers. The complex molecular structure of BSP provides a large number of deactivation paths, almost all of them energetically available following the initial photoexcitation. Femtosecond (fs) time-resolved emission studies in solution and flash photolysis experiments (nano to millisecond regime) were performed to get detailed information on the time domain of the full photocycle. The picture that emerges by combining theoretical and experimental results shows a very fast (less than 100 fs) photoinduced single proton transfer process leading to a phototautomer where a single proton has moved. This species may deactivate through a low-energy CI leading in about 20 ps to a rotameric form in the ground state that has a lifetime of several tens of microseconds in solution. This process competes with another deactivation path taking place prior to the proton-transfer reaction which involves a low-energy CI leading to a rotamer of the enol structure. In the flash photolysis studies, the rotamer of the enol structure was directly identified by the positive transient absorption band in the 250-260 nm and its lifetime in n-hexane (10 ms) is almost 3 orders of magnitude longer than the lifetime of the photochrome (around 40 µs). Our findings do not exclude a double proton transfer reaction in the excited enol form to give a tautomer in less than 100 fs during the first (impulsive) phase of the reaction which reverts back to the photoproducts of the simple proton transfer in 1-3 ps.
Assuntos
Teoria Quântica , Bases de Schiff/química , Ligação de Hidrogênio , Estrutura Molecular , Processos Fotoquímicos , Fatores de TempoRESUMO
We report on studies of the recently synthesized compound (TPC1) with a promising potential use in dye-sensitized solar cells. We used steady-state as well as femtosecond (fs) to nanosecond (ns) time-resolved emission techniques to understand its behaviour under different conditions of solvation and light excitation. In polar solvents the equilibrium between TPC1 normal and anion structures was found to depend on solvent H-bond acceptor ability and concentration of the dye. We observed a correlation between the contribution of the normal form in the total absorption spectrum and solar energy conversion efficiency of the photovoltaic devices prepared in different baths, which are high in dichloromethane and low in tetrahydrofurane. Both forms exhibit a large charge transfer character in the excited state manifested by a large Stokes shift between absorption and emission maxima (up to 9000 cm(-1) in acetonitrile). The lifetime of the relaxed state of the normal structure varies significantly with the solvent polarity (from 80 ps in acetonitrile to 1.8 ns in n-hexane), and it is considerably shorter than that of the anion one (1.2-2.6 ns). The ultrafast relaxation processes are dominated by the solvation dynamics which is the fastest in acetonitrile (below 1 ps) and the slowest in ethanol (about 25 ps, the amplitude-averaged time). The results reported here should be relevant to a better understanding of the photobehaviour of metal-free dyes for solar cells and help in the design of new and more efficient dyes for conversion of light to electricity.
RESUMO
The normal and anion structures of salicylaldehyde azine (SAA) in solvents of different viscosities and polarities have been studied by means of femto- to nanosecond time-resolved emission techniques. In the normal form, an excited-state intramolecular proton-transfer (ESIPT) reaction takes place with a time constant shorter than 80 fs to produce an excited keto-type tautomer in which intramolecular-vibrational energy redistribution and vibrational cooling occur in 100 fs to 2 ps. The viscosity-dependent emission decay in the red part of the spectrum with 5-11 ps reflects a twisting motion leading to rotamers of these keto-type structures, most probably of (n,pi*) nature. For the anion type, the viscosity dependent rise-times (3 to 400 ps) at the red part of the emission, and the wavelength-dependent fluorescence lifetimes (20 to 1100 ps) indicate a stepwise formation of different conformers of the anions. The results reported here should be relevant to a better understanding of the photobehaviour of photochromic compounds and charged chromophores in biological systems.