RESUMO
The cell walls of fungi are composed of glycoproteins, chitin, and α- and ß-glucans. Although there are many reports on ß-glucans, α-glucan polysaccharides are not yet fully understood. This review characterizes the physicochemical properties and functions of (1â3)-α-d-glucans. Particular attention has been paid to practical application and the effect of glucans in various respects, taking into account unfavourable effects and potential use. The role of α-glucans in plant infection has been proven, and collected facts have confirmed the characteristics of Aspergillus fumigatus infection associated with the presence of glucan in fungal cell wall. Like ß-glucans, there are now evidence that α-glucans can also stimulate the immune system. Moreover, α-d-glucans have the ability to induce mutanases and can thus decompose plaque.
Assuntos
Aspergilose/microbiologia , Parede Celular/química , Glucanos/química , Doenças das Plantas/microbiologia , Aspergillus fumigatus/química , Aspergillus fumigatus/patogenicidade , Quitina/química , Fungos/química , Glicoproteínas/química , Polissacarídeos/química , beta-Glucanas/químicaRESUMO
The breeding of insects generates waste in the form of insect excrement and feed residues. In addition, a specific chitinous waste in the form of insect larvae and pupae exuvia is also left. Recent research tries to manage it, e.g., by producing chitin and chitosan, which are value-added products. The circular economy approach requires testing new, non-standard management methods that can develop products with unique properties. To date, the possibility of biochar production from chitinous waste derived from insects has not been evaluated. Here we show that the puparia of Hermetia illucens are suitable for biochar production, which in turn exhibits original characteristics. We found that the biochars have a high nitrogen level, which is rarely achievable in materials of natural origin without artificial doping. This study presents a detailed chemical and physical characterization of the biochars. Moreover, ecotoxicological analysis has revealed the biochars' stimulation effect on plant root growth and the reproduction of the soil invertebrate Folsomia candida, as well as the lack of a toxic effect on its mortality. This predisposes these novel materials with already built-in stimulating properties to be used in agronomy, for example as a carriers for fertilizers or beneficial bacteria.
Assuntos
Quitosana , Dípteros , Animais , Quitina , SoloRESUMO
Chitin has become a desirable raw material used in various areas of life. The black soldier fly (Hermetia illucens) can be a source of this substance. In the literature, there are many methods of obtaining chitin but there is no one universal method of isolating it. In this publication, we present various procedures for the isolation of chitin from H. illucens pupal exuviae. The obtained chitin variants were characterized using different techniques (optical and confocal microscopy, FTIR, XRD, EDX, thermogravimetric analysis). The tested chitin isolated with an efficiency of 5.69-7.95% was the α form with a crystallinity degree of 60% and maximum degradation temperature of 392 °C. Furthermore, we characterized the nickel ion biosorption process on chitin and proposed the mechanism of this process to be ion exchange and complexation. There have been no such studies thus far on the isolation of chitin from H. illucens exuviae or on the biosorption of nickel ions on this type of biosorbent. The conducted research can be used to develop the application of chitin as a metal biosorbent that can be obtained with relatively high efficiency and good sorption properties.