Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7905): 273-279, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418634

RESUMO

Metals with nanocrystalline grains have ultrahigh strengths approaching two gigapascals. However, such extreme grain-boundary strengthening results in the loss of almost all tensile ductility, even when the metal has a face-centred-cubic structure-the most ductile of all crystal structures1-3. Here we demonstrate that nanocrystalline nickel-cobalt solid solutions, although still a face-centred-cubic single phase, show tensile strengths of about 2.3 gigapascals with a respectable ductility of about 16 per cent elongation to failure. This unusual combination of tensile strength and ductility is achieved by compositional undulation in a highly concentrated solid solution. The undulation renders the stacking fault energy and the lattice strains spatially varying over length scales in the range of one to ten nanometres, such that the motion of dislocations is thus significantly affected. The motion of dislocations becomes sluggish, promoting their interaction, interlocking and accumulation, despite the severely limited space inside the nanocrystalline grains. As a result, the flow stress is increased, and the dislocation storage is promoted at the same time, which increases the strain hardening and hence the ductility. Meanwhile, the segment detrapping along the dislocation line entails a small activation volume and hence an increased strain-rate sensitivity, which also stabilizes the tensile flow. As such, an undulating landscape resisting dislocation propagation provides a strengthening mechanism that preserves tensile ductility at high flow stresses.


Assuntos
Cobalto , Metais , Cobalto/química , Teste de Materiais , Metais/química , Resistência à Tração
2.
Proc Natl Acad Sci U S A ; 117(28): 16199-16206, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601202

RESUMO

Atomistic simulations of dislocation mobility reveal that body-centered cubic (BCC) high-entropy alloys (HEAs) are distinctly different from traditional BCC metals. HEAs are concentrated solutions in which composition fluctuation is almost inevitable. The resultant inhomogeneities, while locally promoting kink nucleation on screw dislocations, trap them against propagation with an appreciable energy barrier, replacing kink nucleation as the rate-limiting mechanism. Edge dislocations encounter a similar activated process of nanoscale segment detrapping, with comparable activation barrier. As a result, the mobility of edge dislocations, and hence their contribution to strength, becomes comparable to screw dislocations.

3.
Proc Natl Acad Sci U S A ; 116(21): 10297-10302, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30975752

RESUMO

Various single elements form incommensurate crystal structures under pressure, where a zeolite-type "host" sublattice surrounds a "guest" sublattice comprising 1D chains of atoms. On "chain melting," diffraction peaks from the guest sublattice vanish, while those from the host remain. Diffusion of the guest atoms is expected to be confined to the channels in the host sublattice, which suggests 1D melting. Here, we present atomistic simulations of potassium to investigate this phenomenon and demonstrate that the chain-melted phase has no long-ranged order either along or between the chains. This 3D disorder provides the extensive entropy necessary to make the chain melt a true thermodynamic phase of matter, yet with the unique property that diffusion remains confined to 1D only. Calculations necessitated the development of an interatomic forcefield using machine learning, which we show fully reproduces potassium's phase diagram, including the chain-melted state and 14 known phase transitions.

4.
Phys Rev Lett ; 123(1): 015701, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386397

RESUMO

Strain glass is being established as a conceptually new state of matter in highly doped alloys, yet the understanding of its microscopic formation mechanism remains elusive. Here, we use a combined numerical and experimental approach to establish, for the first time, that the formation of strain glasses actually proceeds via the gradual percolation of strain clusters, namely, localized strain clusters that expand to reach the percolating state. Furthermore, our simulation studies of a wide variety of specific materials systems unambiguously reveal the existence of distinct scaling properties and universal behavior in the physical observables characterizing the glass transition, as obeyed by many existing experimental findings. The present work effectively enriches our understanding of the underlying physical principles governing glassy disordered materials.

5.
J Phys Condens Matter ; 35(46)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37557890

RESUMO

An open question related to strain-glass (STG) alloys is whether they process similar dynamical behaviors to other glass systems. In the present work, we investigate the reorientation process of martensite domains in both STG and martensitic alloys. Our results show the presence of highly doped point defects can greatly intensify the dynamical heterogeneity and spatiotemporal correlation in ferroelastic or shape memory alloy systems, which are also two main hallmarks of structural glasses. What's more, we find that such dynamic heterogeneity exists in a different range spanning microscopic to mesoscopic scales, indicated by our molecular dynamic simulations and time-dependent Ginzburg-Landau modeling. Dopant atoms induced transient strain networks, i.e. spatial correlated local lattice distortion, is a response for such heterogeneous dynamics. The present study thus solidifies STG as a new state of matter and may provide guidelines for developing new STG alloys.

6.
Adv Mater ; 33(49): e2103469, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34632645

RESUMO

Ripples are a class of native structural defects widely existing in 2D materials. They originate from the out-of-plane flexibility of 2D materials introducing spatially evolving electronic structure and friction behavior. However, the effect of ripples on 2D ferroics has not been reported. Here a molecular dynamics study of the effect of ripples on the temperature-induced ferroic phase transition and stress-induced ferroic domain switching in ferroelastic-ferroelectric monolayer GeSe is presented. Ripples stabilize the short-range ferroic orders in the high-temperature phase with stronger ferroicity and longer lifetime, thereby increasing the transition temperature upon cooling. In addition, ripples significantly affect the domain switching upon loading, changing it from a highly correlated process into a ripple-driven localized one where ripples act as source of dynamical random stress. These results reveal the fundamental role of ripples on 2D ferroicity and provide theoretical guidance for ripple engineering of controlled phase transition and domain switching with potential applications in flexible 2D electronics.

7.
Nat Commun ; 12(1): 5755, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599172

RESUMO

Strain glass is a glassy state with frozen ferroelastic/martensitic nanodomains in shape memory alloys, yet its nature remains unclear. Here, we report a glassy feature in strain glass that was thought to be only present in structural glasses. An abnormal hump is observed in strain glass around 10 K upon normalizing the specific heat by cubed temperature, similar to the boson peak in metallic glass. The simulation studies show that this boson-peak-like anomaly is caused by the phonon softening of the non-transforming matrix surrounding martensitic domains, which occurs in a transverse acoustic branch not associated with the martensitic transformation displacements. Therefore, this anomaly neither is a relic of van Hove singularity nor can be explained by other theories relying on structural disorder, while it verifies a recent theoretical model without any assumptions of disorder. This work might provide fresh insights in understanding the nature of glassy states and associated vibrational properties.

8.
Nat Commun ; 12(1): 3632, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131138

RESUMO

Multitudinous topological configurations spawn oases of many physical properties and phenomena in condensed-matter physics. Nano-sized ferroelectric bubble domains with various polar topologies (e.g., vortices, skyrmions) achieved in ferroelectric films present great potential for valuable physical properties. However, experimentally manipulating bubble domains has remained elusive especially in the bulk form. Here, in any bulk material, we achieve self-confined bubble domains with multiple polar topologies in bulk Bi0.5Na0.5TiO3 ferroelectrics, especially skyrmions, as validated by direct Z-contrast imaging. This phenomenon is driven by the interplay of bulk, elastic and electrostatic energies of coexisting modulated phases with strong and weak spontaneous polarizations. We demonstrate reversable and tip-voltage magnitude/time-dependent donut-like domain morphology evolution towards continuously and reversibly modulated high-density nonvolatile ferroelectric memories.

9.
Nat Commun ; 11(1): 5014, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024105

RESUMO

The hydrogen phase diagram has several unusual features which are well reproduced by density functional calculations. Unfortunately, these calculations do not provide good physical insights into why those features occur. Here, we present a fast interatomic potential, which reproduces the molecular hydrogen phases: orientationally disordered Phase I; broken-symmetry Phase II and reentrant melt curve. The H2 vibrational frequency drops at high pressure because of increased coupling between neighbouring molecules, not bond weakening. Liquid H2 is denser than coexisting close-packed solid at high pressure because the favored molecular orientation switches from quadrupole-energy-minimizing to steric-repulsion-minimizing. The latter allows molecules to get closer together, without the atoms getting closer, but cannot be achieved within in a close-packed layer due to frustration. A similar effect causes negative thermal expansion. At high pressure, rotation is hindered in Phase I, such that it cannot be regarded as a molecular rotor phase.

10.
Materials (Basel) ; 13(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824409

RESUMO

Understanding the properties of defects is crucial to design higher performance semiconductor materials because they influence the electronic and optical properties significantly. Using ab initio calculations, the dynamics properties of nitrogen interstitial in GaN material, including the configuration, migration, and interaction with vacancy were systematically investigated in the present work. By introducing different sites of foreign nitrogen atom, the most stable configuration of nitrogen interstitial was calculated to show a threefold symmetry in each layer and different charge states were characterized, respectively. In the researches of migration, two migration paths, in-plane and out-of-plane, were considered. With regards to the in-plane migration, an intermediated rotation process was observed first time. Due to this rotation behavior, two different barriers were demonstrated to reveal that the migration is an anisotropic behavior. Additionally, charged nitrogen Frenkel pair was found to be a relatively stable defect complex and its well separation distance was about 3.9 Å. Part of our results are in good agreement with the experimental results, and our work provides underlying insights of the identification and dynamics of nitrogen interstitial in GaN material. This study of defects in GaN material is useful to establish a more complete theory and improve the performance of GaN-based devices.

11.
Sci Rep ; 7: 46360, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28402321

RESUMO

An open question is the underlying mechanisms for a recent discovered nanocomposite, which composed of shape memory alloy (SMA) matrix with embedded metallic nanowires (NWs), demonstrating novel mechanical properties, such as large quasi-linear elastic strain, low Young's modulus and high yield strength. We use finite element simulations to investigate the interplay between the superelasticity of SMA matrix and the elastic-plastic deformation of embedded NWs. Our results show that stress transfer plays a dominated role in determining the quasi-linear behavior of the nanocomposite. The corresponding microstructure evolution indicate that the transfer is due to the coupling between plastic deformation within the NWs and martensitic transformation in the matrix, i.e., the martensitic transformation of the SMA matrix promotes local plastic deformation nearby, and the high plastic strain region of NWs retains considerable martensite in the surrounding SMA matrix, thus facilitating continues martensitic transformation in subsequent loading. Based on these findings, we propose a general criterion for achieving quasi-linear elasticity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA