Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Microanal ; 25(3): 583-591, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30829185

RESUMO

In this study, we have examined ceramic matrix composites with silicon carbide fibers in a melt-infiltrated silicon carbide matrix (SiC/SiC). We subjected samples to tensile loads while collecting micro X-ray computed tomography images. The results showed the expected crack slowing mechanisms and lower resistance to crack propagation where the fibers ran parallel and perpendicular to the applied load respectively. Cracking was shown to initiate not only from the surface but also from silicon inclusions. Post heat-treated samples showed longer fiber pull-out than the pristine samples, which was incompatible with previously proposed mechanisms. Evidence for oxidation was identified and new mechanisms based on oxidation or an oxidation assisted boron nitride phase transformation was therefore proposed to explain the long pull-out. The role of oxidation emphasizes the necessity of applying oxidation resistant coatings on SiC/SiC.

2.
Microsc Microanal ; 23(3): 518-526, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28434434

RESUMO

Ceramic matrix composites (CMCs) are structural materials, which have useful properties that combine high strength at high temperatures with moderate toughness. Carbon fibers within a matrix of carbon and silicon carbide, called C/C-SiC, are a particular class of CMC noted for their high oxidation resistance. Here we use a combination of four-point bending and X-ray radiography, to study the mechanical failure of C/C-SiC CMCs. Correlating X-ray radiographic and load/displacement curve data reveals that the fiber bundles act to slow down crack propagation during four-point bending tests. We attribute this to the fact that strain energy is expended in breaking these fibers and in pulling fiber bundles out of the surrounding matrix material. In addition, we find that the local distribution and concentration of SiC plays an important role in reducing the toughness of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA